Synthesis of cyclic ethers and allylic sulfides by rearrangement of phenylsulfanyl substituted $1, n$-diols with toluene-p-sulfonic acid and with toluene-p-sulfonyl chloride

Laurent Djakovitch, ${ }^{a}$ Jason Eames, ${ }^{* a b}$ David J. Fox, ${ }^{a}$ Francis H. Sansbury ${ }^{a}$ and Stuart Warren * ${ }^{*}$
${ }^{a}$ University Chemical Laboratory, Lensfield Road, Cambridge, UK CB2 1EW
${ }^{b}$ Department of Chemistry, Queen Mary and Westfield College, Mile End Road, London, UKE1 4NS

Received (in Cambridge, UK) 8th July 1999, Accepted 19th August 1999

Rearrangement of a series of $1, n$-diols ($n=2$ to 12), with a PhS-group adjacent to one OH group, under two sets of conditions gives single compounds in excellent yield drawn for four possible classes of products. The effect of the chain length helps in the understanding of the different cyclisation modes and the mechanism of the rearrangements.

Treatment of a β-hydroxy sulfide, e.g. $\mathbf{1}$ with acid gives rise to the formation of an intermediate episulfonium ion e.g. 2, by stereospecific loss of water. ${ }^{1}$ This high energy episulfonium ion cannot be isolated and prefers to decompose by the loss of a proton to give an allylic sulfide. ${ }^{2}$ Intramolecular capture of this episulfonium ion is possible with alcohols, ${ }^{3}$ esters, ${ }^{4}$ amides ${ }^{5}$ and thiols ${ }^{6}$ to give stereospecifically spirocyclic ethers e.g. 3, lactones, amines and sulfides. Over the course of these studies we have elaborated rules for the regio- and stereocontrol (involving stereochemistry, Baldwin's rules ${ }^{7}$ and the ThorpeIngold effect) ${ }^{8}$ for such rearrangements. ${ }^{9}$ We have always observed intramolecular cyclisation at the most substituted end of the episulfonium ion to give THFs like anti-3, amines anti-5 and THP anti-7. In many cases the capture of an episulfonium ion does not obey Baldwin's rules due to the partially disfavoured endo-nature of some of these cyclisations. For example, addition of β-hydroxy sulfide anti-1 with catalytic toluene- p-sulfonic acid (TsOH) gives the episulfonium ion 2 which is captured intramolecularly to give the spirocyclic ether anti-3 in essentially quantitative yield via a disfavoured hybrid 6-endo-5-exo-tet cyclisation (Scheme 1). ${ }^{3,4}$ This $1,2-\mathrm{PhS}$ migration occurs stereospecifically with inversion of configur-

Scheme 1 Reagents and conditions: a, $\mathrm{TsOH}, \mathrm{CH}_{2} \mathrm{Cl}_{2}$, reflux; b, TMSOTf, $\mathrm{CH}_{2} \mathrm{Cl}_{2},-78^{\circ} \mathrm{C}$.
ation at the migratory terminus. ${ }^{10}$ Further studies have revealed that this rearrangement is under thermodynamic control, however the observed THF anti-3 is the major kinetic product by far. ${ }^{11}$

We were interested in extending this cyclisation procedure to the synthesis of less common larger ring size cyclic ethers and now report on our investigation into the different possible modes of cyclisations observed. ${ }^{12}$ We comment on the effects of the chain length n between the two hydroxy groups in the diols $\mathbf{8}$ during acid-catalysed rearrangement and on an alternative reaction: the rearrangement of the same diols $\mathbf{8}$ with toluene- p sulfonyl chloride (TsCl) in pyridine which give complementary products to that observed from the acid-catalysed rearrangement. The acid-catalysed rearrangement of these diols occurs via episulfonium ion formation, while the TsCl in pyridine reaction proceeds via primary toluene- p-sulfonate $\mathbf{1 0}$ as an intermediate, which is not usually isolated. The various products from the rearrangement of the diol $\mathbf{8}, n=3$ are illustrated in Scheme 2; the rearranged allylic sulfides 13 , formed by [1,2]PhS shift, the allylic sulfide $\mathbf{1 4}$ formed by a less common [1,5]PhS shift and the two cyclic ethers 11 formed with [1,2]-PhS migration by a hybrid 7-endo-6-exo-tet cyclisation and 12 formed without PhS migration by a pure 5-exo-tet cyclisation.

Synthesis and rearrangement of 1,2 -diol 8, $n=1$

We chose to synthesise the diol $\mathbf{8}, n=1$ from the allylic sulfide 16, using our modification of the Sharpless racemic dihydroxylation to introduce the 1,2 -diol functionality. ${ }^{13,14}$ This sulfide $\mathbf{1 6}$ was synthesised using the Wittig reaction; methyl triphenylphosphonium iodide was deprotonated with $\mathrm{n}-\mathrm{BuLi}$ and quenched with the aldehyde 15. This reaction had to be carried out in the absence of light because allylic sulfides like $\mathbf{1 6}$ are well known to rearrange (via the radical mechanism) ${ }^{15}$ to the more thermodynamically stable allylic sulfide. ${ }^{16}$ Treatment of the diol 8, $n=1$ under our usual toluene- p-sulfonic acid conditions ${ }^{4}$ (TsOH in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$) gave the allylic sulfide 19 , presumably via elimination of the episulfonium ion 18 (Scheme 3). In contrast, treatment of diol $\mathbf{8}, n=1$ with TsCl in pyridine gave the epoxide $\mathbf{1 7}$ in 80% yield by chemoselective tosylation (20) of the primary OH group in $\mathbf{8}, n=1$. The structure of this epoxide was independently confirmed by synthesis from the aldehyde 15 using sulfonium ylide chemistry. ${ }^{17}$ However, submission of this epoxide $\mathbf{1 7}$ with TsOH causes rearrangement to give the allylic sulfide 19 by a [1,2]-SPh shift, presumably via the highly strained oxaspiro[2.2]cyclopentane transition state 22 and the

Scheme 2

Scheme 3 Reagents and conditions: a, $\mathrm{Me}_{2} \mathrm{~S}=\mathrm{CH}_{2}, \mathrm{THF},-78^{\circ} \mathrm{C}$; b, $\mathrm{Ph}_{3} \mathrm{P}=\mathrm{CH}_{2}, \mathrm{THF},-78^{\circ} \mathrm{C}$; c, cat. OsCl ${ }_{3}$, quinuclidine, $\mathrm{K}_{3} \mathrm{Fe}(\mathrm{CN})_{6}, t-\mathrm{BuOH}-\mathrm{H}_{2} \mathrm{O}$; $\mathrm{d}, \mathrm{TsCl}$, pyridine; e, $\mathrm{TsOH}, \mathrm{CH}_{2} \mathrm{Cl}_{2}$, reflux.

Scheme 4 Reagents and conditions: a, $\mathrm{LiAlH}_{4}, \mathrm{Et}_{2} \mathrm{O}$; b, TsCl , pyridine; c, $\mathrm{TsOH}, \mathrm{CH}_{2} \mathrm{Cl}_{2}$, reflux.
same episulfonium ion $\mathbf{2 3}$ in near quantitative yield. It is worthy of note that neither of the cyclised products such as an oxetane or the epoxide $\mathbf{1 7}$ have been observed in the acid-catalysed rearrangement, presumably because neither ring closure can compete with allylic sulfide formation. Under these reaction conditions the allylic sulfide $\mathbf{1 9}$ must be the thermodynamic product, but it may also be kinetically preferred.

Synthesis and rearrangement of 1,3-diol 8, $n=2$

The homologous 1,3 -diol $\mathbf{8}, n=2$ was synthesised using our previously developed aldol methodology. ${ }^{4}$ Reaction of enolate 24 (derived from ethyl acetate and LDA) with aldehyde 15, followed by reduction $\left(\mathrm{LiAlH}_{4}\right.$, ether, 2 h$)$ gave the $1,3-\mathrm{diol} \mathbf{8}, n=2$ in excellent yield (Scheme 4). Acid-catalysed rearrangement of

Table 1 Yields in the synthesis of $1, n$-diols $\mathbf{8} ; n=3-6,8$ and 11

Reactions \longrightarrow acetal formation			Organolithium36	Addition to aldehyde 15		Hydrolysis	
Alcohols 34	Acetal 35			Acetals 37		$1, n$-Diols 8	
$n=3 ; \mathrm{X}=\mathrm{Br}$	$n=3 ; \mathrm{X}=\mathrm{Br}$	92\%	$n=3$	$n=3 ;$	99\%	$n=3 ;$	99\%
$n=4 ; \mathrm{X}=\mathrm{Cl}$	$n=4 ; \mathrm{X}=\mathrm{Cl}$	90\%	$n=4$	$n=4$;	85\%	$n=4 ;$	85\%
$n=5 ; \mathrm{X}=\mathrm{Br}$	$n=5 ; \mathrm{X}=\mathrm{Br}$	94\%	$n=5$	$n=5 ;$	94\%	$n=5$;	94\%
$n=6 ; \mathrm{X}=\mathrm{Br}$	$n=6 ; \mathrm{X}=\mathrm{Br}$	95\%	$n=6$	$n=6$	96\%	$n=6$;	88\%
$n=8 ; \mathrm{X}=\mathrm{Br}$	$n=8 ; \mathrm{X}=\mathrm{Br}$	91\%	$n=8$	$n=8$;	87\%	$n=8$;	100\%
$n=11 ; \mathrm{X}=\mathrm{Br}$	$n=11 ; \mathrm{X}=\mathrm{Br}$	86\%	$n=12$	$n=11$;	99\%	$n=11$;	89\%

this diol gave the expected THF 26 (99\%) via a hybrid 6-endo-5-exo-tet cyclisation - no oxetane by the competing (pure 5-exotet) pathway was observed. Under the TsCl-pyridine conditions, this 1,3-diol gave an unexpected allylic alcohol 28 (97\%) by a [1,4]-SPh shift via the sulfonium ion $\mathbf{3 0} .^{12,18}$ Both [1,2]- and [1,4]-SPh participation are well documented, and are known to occur at similar rates. ${ }^{19}$ Presumably [1,4]-SPh rearrangement in this case is preferred over [1,2]-SPh participation because the initial chemoselective tosylation, which gives 29, occurs on the primary alcohol in 8, $n=2$ (Scheme 4).

The structure of the allylic alcohol 28 was confirmed independently by synthesising the alternative allylic sulfide $\mathbf{3 3}$ derived from the alternative [1,2]-SPh shift. Chemoselective protection of the primary alcohol in diol $\mathbf{8}, n=2$ using benzoyl chloride gave 31, rearrangement with TsOH gave the allylic sulfide 32 via a known [1,2]-SPh shift ${ }^{1}$ and deprotection ($\mathrm{HCl}-$ EtOH) gave the allylic sulfide 33 (Scheme 5). The ${ }^{1} \mathrm{H}$ NMR

Scheme 5 Reagents and conditions: a, $\mathrm{PhCOCl}, \mathrm{Et}_{3} \mathrm{~N}, \mathrm{CH}_{2} \mathrm{Cl}_{2}$; b, $\mathrm{TsOH}, \mathrm{CH}_{2} \mathrm{Cl}_{2}$, reflux; c, $\mathrm{HCl}, \mathrm{MeOH}$.
spectra of both 28 and 33 are clearly different, the allylic H in 28 (adjacent to oxygen) came at a much lower field ($\delta 4.11 \mathrm{ppm}$) than the allylic H in 33 ($\delta 3.65 \mathrm{ppm}$) which is next to sulfur, illustrating the difference in electronegativity (Scheme 5).

Synthesis and rearrangement of homologous $1, n$-diols 8, $n=3-6$, 8 and 11
These remaining homologous $1, n$-diols $\mathbf{8}, n=3-6,8$ and 11 were synthesised using a methodology developed by Eaton et al. ${ }^{20}$ The required lithium derivatives 36 were synthesised by protecting the alcohols 34 as an acetal 35 , and a subsequent halogenlithium exchange with a lithium $(1 \%+\mathrm{Na})$ metal (Table 1). Addition of these organolithium reagents to the aldehydes $\mathbf{1 5}$ followed by deprotection $\left(\mathrm{HCl}-\mathrm{H}_{2} \mathrm{O}-\mathrm{EtOH}\right)$ (which was easily achieved without rearrangement) gave the $1, n$-diols $\mathbf{8}$; $n=3-6$, 8 and 11 in excellent yield as shown in Scheme 6 and Table 1.

Acid-catalysed rearrangement of the diols 8, $n=3$ gave exclusively the tetrahydropyrans (THP) $\mathbf{1 1}$ in quantitative yield. Rearrangement must occur via a hybrid 7-endo-6-exo-tet cyclisation onto the most substituted end of the episulfonium ion 38 as shown in Scheme 7. The alternative THF 12 from a pure 5-exo-tet cyclisation was not observed. However, treat-

Scheme 6 Reagents and conditions: a, $\mathrm{Cl}_{2} \mathrm{CHCO}_{2} \mathrm{H}$, ethyl vinyl ether; b, $\mathrm{Li}, 1 \% \mathrm{Na}, \mathrm{Et}_{2} \mathrm{O},-20^{\circ} \mathrm{C} ; \mathrm{c}, \mathrm{HCl}, \mathrm{MeOH}-\mathrm{H}_{2} \mathrm{O}(1: 1)$.

Scheme 7 Reagents and conditions: $\mathrm{a}, \mathrm{TsCl}$, pyridine; b , TsOH , $\mathrm{CH}_{2} \mathrm{Cl}_{2}$, reflux.
ment of the 1,4 -diol $\mathbf{8}, n=3$ with TsCl in pyridine gave this alternative THF $\mathbf{1 2}$ in excellent yield by simple ether formation. This THF 12 and THP 11 were easily characterised by both ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR. In the ${ }^{1} \mathrm{H}$ NMR, the THP $\mathbf{1 1}{ }^{21}$ has a double doublet for $\mathbf{H}^{\text {a }}$ with typical six-membered ring axial-axial (11.2 $\mathrm{Hz})$ and axial-equatorial $(4.3 \mathrm{~Hz})$ couplings, however for the

Table 2 Characterisation of pure-exo and hybrid endo-exo cyclic ethers by ${ }^{13} \mathrm{C}$ NMR and mass spectra

$\delta_{\mathrm{c}}(\mathrm{ppm})$ or mass spectrum	Unrearranged heterocycle pure exo-cyclic ethers				Rearranged heterocycle hybrid endo-exo-cyclic ethers	
	Epoxide 17	THF 12	THP 41	DHP 50	THF 26	THP 11
Quaternary carbon (ppm)	(C-S) 59	(C-S) 55	(C-S) 57	(C-S) 57	(C-O) 84	(C-O) 75
Tertiary carbon (ppm)	(C-O) 74	(C-O) 80	(C-O) 82	(C-O) 80	(C-S) 55	(C-S) 55
$191.1\left(\mathrm{PhSC}_{6} \mathrm{H}_{10}{ }^{+}\right)$	40\%	100\%	70\%)	0\%	0\%
M - 191.1	5\%	65\%	100\%	-	0\%	0\%
$136.0\left(\mathrm{PhSC}_{2} \mathrm{H}_{3}{ }^{+}\right)$	0\%	0\%	0\%	-	60\%	80\%

THF 12 the $\mathbf{H}^{\text {a }}$ resonance overlapped with the other $\mathrm{CH}_{2} \mathrm{O}$ protons. The most reliable method came from the ${ }^{13} \mathrm{C}$ NMR spectra; the THF has a quaternary carbon next to $\operatorname{PhS}(\delta 55)$ and a CH group next to oxygen ($\delta 80$), while the THP has a quaternary carbon next to oxygen ($\delta 75$) and a CH group next to $\mathrm{PhS}(\delta 55)$. Additionally, in the mass spectrum, the THF 12 fragments between the ring and the $\mathrm{C}_{6} \mathrm{H}_{10} \mathrm{SPh}$ group and both fragments $\left(\mathrm{C}_{6} \mathrm{H}_{10} \mathrm{SPh}\right.$ and $\left.\mathrm{C}_{4} \mathrm{H}_{7} \mathrm{O}\right)$ are observed. No such fragmentation is possible with the THP $\mathbf{1 1}$ which gives a $\mathrm{PhSC}_{2} \mathrm{H}_{3}$ fragment as the base peak (Table 2).

With this THF 12 now available (Scheme 7), we were able to demonstrate why we have never observed it in the acid-catalysed rearrangement of these types of diols such as $\mathbf{8}, n=3$. Submission of this THF under our usual TsOH- $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ conditions for 5 min gave the THP 11 in quantitative yield. It is clear the THP 11 is the thermodynamic product from the acid-catalysed rearrangement. New evidence suggests that the THF $\mathbf{1 2}$ is the major kinetic product of cyclisation onto episulfonium ions like 38 . ${ }^{21}$

Acid-catalysed rearrangement of the homologous 1,5-diol 8, $n=4$ gave for the first time a mixture of products - the THP 41 (59%) and the allylic sulfide $42(13 \%)$-in a combined yield of only 72% as illustrated in Scheme 8. Presumably capture of the

41

8; $n=4$

40

42 13\%

Scheme 8 Reagents and conditions: a, TsCl , pyridine; $\mathrm{b}, \mathrm{TsOH}$, $\mathrm{CH}_{2} \mathrm{Cl}_{2}$, reflux.
episulfonium ion 40 by a pure 6-exo-tet cyclisation to give the THP 41 becomes less entropically favoured as the chain length n increases. Competing elimination of the episulfonium ion 40 gave the allylic sulfide 42 with an overall [1,2]-SPh shift. The alternative oxepine from a hybrid 8-endo-7-exo-tet in 40 was not observed. The THP 41 was assigned from the chemical shifts in the ${ }^{13} \mathrm{C}$ NMR spectrum and the mass fragmentation pattern, which was characteristic of this type of unrearranged
heterocycle (Table 2). However, by ${ }^{1} \mathrm{H}$ NMR the THP 41 has an unusual double doublet for $\mathbf{H}^{\mathbf{a}}$ with axial-axial $(10.82 \mathrm{~Hz})$ and axial-equatorial (1.65 Hz) couplings, which are untypical for a six membered ring. Resubmission of this THP 41 under prolonged heating with TsOH in toluene (12 hours) gave the more thermodynamic allylic sulfide $\mathbf{4 2}$ (92%) and clearly this allylic sulfide is the thermodynamic product from the cyclisation. In comparison TsCl -pyridine on diol $8, n=4$ gave the same THP 41 but in 98% yield, by simple ether formation.

We were next interested in improving this 6-exo-tet cyclisation by increasing the effective concentration of the nucleophilic OH group in 40 by having a (Z)-alkene in the tethered chain. The synthesis of diol $(Z)-48$ was achieved by trimethylsilyl protection of the OH group in the ester $\mathbf{2 5}$, and DIBAL-H reduction gave the aldehyde 44 in good yield (Scheme 9). A

Scheme 9 Reagents and conditions: a, $\mathrm{Me}_{3} \mathrm{SiCl}, \mathrm{Et}_{3} \mathrm{~N}, \mathrm{CH}_{2} \mathrm{Cl}_{2}, 0^{\circ} \mathrm{C}$; b, DiBAL, THF, $-78^{\circ} \mathrm{C}$; c, 2 eq. n-BuLi, THF, $-78^{\circ} \mathrm{C}$; d, $\mathrm{Me}_{3} \mathrm{SiCl}$; e, 44, THF, $-78^{\circ} \mathrm{C}$; e, TBAF, THF.
subsequent Wittig reaction with $\mathbf{4 6}$ gave a stereoisomeric mixture (ratio of $1: 1$) of alkenes (E) and $(Z)-47$, and deprotection with TBAF in THF gave a separable mixture of the (E) - and (Z)-alkene 48 in low yield. In contrast to the long chain diol 8 , $n=4$, the rearrangement of the (Z)-alkene $\mathbf{4 8}$ gave quantitative formation of the dihydropyran (DHP) 50, whereas unsurprisingly the (E)-alkene $\mathbf{4 8}$ preferred to eliminate to give the allylic sulfide $(E, E)-51$. Presumably the cyclisation of $(Z)-49$ is more favourable than $\mathbf{4 0}$ and elimination cannot compete (Scheme 10).

Rearrangement of the remaining diols $\mathbf{8}, n=5,6,8$ and 11 under acid catalysed conditions gave the allylic sulfides 53-56 in near quantitative yield (Table 3). For example, cyclisation of diol $\mathbf{8}, n=5$ no longer occurs (the chain length appears to be
too long and formation of the oxepine is disfavoured), and elimination of the episulfonium ion $\mathbf{5 2}$ is most preferred to give the allylic sulfide 53 in 95% yield. The TsCl -pyridine reaction finally gave the isolable primary toluene- p-sulfonate $\mathbf{1 0}, n=2$ (90%) from diol $\mathbf{8}, n=5$ as neither the cyclic ether formation nor a $[1,7]-\mathrm{SPh}$ shift is favourable (Scheme 11).

Conclusion

In the acid-catalysed rearrangement of $1, n$-diols $\mathbf{8}, n=2,3,4,5$, 6,8 and 11 , we have undoubtedly shown that the reaction is under thermodynamic control. By comparison of the products, we can deduce that allylic sulfides are formed when the chain length is too short $(\mathbf{8}, n=1)$ or too long $(\mathbf{8}, n>4)$ for efficient cyclisation. The rearranged heterocycles are formed only if the ring size is $n=2$ (for THF's) and $n=3$ and 4 (for THP's) but not otherwise-THP's are favoured over both THF's and

Scheme 10 Reagents and conditions: a, $\mathrm{TsOH}, \mathrm{CH}_{2} \mathrm{Cl}_{2}$, reflux.
oxepines ($\mathbf{8}, n=3$ and 4$)$, and THF's are favoured only over oxetanes $(\mathbf{8}, n=2)$. As a consequence of the increase of the chain length n pure exo-ring closure to give unrearranged cyclic ethers is favoured-this is purely a thermodynamic consequence. This acid-catalysed rearrangement predictably gives one compound in near quantitative yield (Table 3).
In the TsCl -pyridine reactions, all diols cyclise by simple ether formation, except when cyclisation is disfavoured by either ring strain (e.g., $\mathbf{8}, n=2$ where the competitive [1,4]-SPh occurs) or when the chain length is too long ($\mathbf{8}, n=5$) and $\mathbf{1 0}$, $n=5$ is isolated. Furthermore, cyclisation onto the toluene- p sulfonate proceeds under kinetic control. By comparison both reactions (TsCl -pyridine and $\mathrm{TsOH}-\mathrm{CH}_{2} \mathrm{Cl}_{2}$) are very sensitive to ring strain, and disfavour four membered ring formation (8, $n=2$ and 3).

Experimental

All solvents were distilled before use. Tetrahydrofuran (THF) and ether were freshly distilled from LiAlH_{4}, whilst dichloromethane $\left(\mathrm{CH}_{2} \mathrm{Cl}_{2}\right)$ and toluene were freshly distilled from CaH_{2}. Triphenylmethane was used as the indicator for THF. n-BuLi was titrated against diphenylacetic acid before use. All reactions were carried out under nitrogen using oven-dried glassware. Flash column chromatography was carried out using Merck Kieselgel 60 (230-400 mesh). Thin layer chromatography (TLC) was carried out on commercially available pre-coated plates (Merck Kieselgel $60 \mathrm{~F}_{254}$ silica). Proton and carbon NMR spectra were recorded on a Bruker WM 200, WM 250 or WM400 Fourier transform spectrometers using an internal deuterium lock. Chemical shifts are quoted in parts

Scheme 11 Reagents and conditions: a, TsCl , pyridine; b, $\mathrm{TsOH}, \mathrm{CH}_{2} \mathrm{Cl}_{2}$, reflux.
Table 3 Products from the rearrangement of diols $\mathbf{8}$ and $\mathbf{4 8}$ with TsCl -pyridine and with $\mathrm{TsOH}-\mathrm{CH}_{2} \mathrm{Cl}_{2}$

Starting material	Product from TsCl-pyridine		Product from $\mathrm{TsOH}-\mathrm{CH}_{2} \mathrm{Cl}_{2}$	
	Product type	Yield	Product type	Yield
8; $n=1$	Unrearranged heterocycle	17; 80\%	Allylic sulfide	19; 98%
8; $n=2$	[1,4]-SPh Shift	28; 97%	Rearranged heterocycle	26; 99\%
8; $n=3$	Unrearranged heterocycle	12; 98%	Rearranged heterocycle	11; 100%
8; $n=4$	Unrearranged heterocycle	41; 98%	Unrearranged heterocycle	41; 59%
			Allylic sulfide	42, 13\%
(Z)-48	-	-	Unrearranged heterocycle	50; 98\%
(E)-48	-	-	Allylic sulfide	51; 95\%
8; $n=5$	Primary tosylate	10; $n=5 ; 90 \%$	Allylic sulfide	53; 90\%
8; $n=6$	-	-	Allylic sulfide	54; 99\%
8; $n=8$	-	-	Allylic sulfide	55; 95\%
8; $n=11$	-	-	Allylic sulfide	56; 95\%

per milllion downfield from tetramethylsilane. Carbon NMR spectra were recorded with broad proton decoupling and Attached Proton Test (ATP). The symbol * after the carbon shift indicates an even number of attached protons; i.e., CH_{2} or quaternary carbons. The symbols i-, $o-, m$ - and p - denote the ipso-, ortho-, meta- and para- positions respectively for the phenyl ring (PhS group). Mass spectra were recorded on a AEI Kratos MS30 or MS890 machine using a DS503 data system for high resolution analysis. All compounds were isolated using flash column chromatography and were assumed to have a purity of greater than 98% (determined by NMR).

2-[1'-(Phenylsulfanyl)cyclohexyl]ethane-1,2-diol 8, $\boldsymbol{n}=\mathbf{1}$

$\mathrm{OsCl}_{3} \cdot 6 \mathrm{H}_{2} \mathrm{O}(84 \mu \mathrm{~g}, 14 \mathrm{mmol})$ was added to a stirred solution of allylic sulfide $16(25 \mathrm{mg}, 0.14 \mathrm{mmol}), \mathrm{K}_{3} \mathrm{Fe}(\mathrm{CN})_{6}(0.11 \mathrm{~g}$, $0.42 \mathrm{mmol}), \mathrm{K}_{2} \mathrm{CO}_{3}(40 \mathrm{mg}, 0.42 \mathrm{mmol})$, quinuclidine (0.9 mg , $14 \mu \mathrm{~mol})$ and $\mathrm{OsCl}_{3} \cdot 6 \mathrm{H}_{2} \mathrm{O}(84 \mu \mathrm{~g}, 14 \mathrm{mmol})$ in $\mathrm{Bu} \mathrm{OH}-\mathrm{H}_{2} \mathrm{O}$ $(1 \mathrm{ml}, 1: 1)$. The solution was stirred for 1 hour. The solution was extracted with ether $(3 \times 20 \mathrm{ml})$. The combined organic layers were dried $\left(\mathrm{MgSO}_{4}\right)$ and evaporated under reduced pressure. The residue was purified by flash column chromatography on silica gel eluting with light petroleum $\left(40-60^{\circ} \mathrm{C}\right)$-ether ($1: 1$) the diol $\mathbf{8}, n=1(27 \mathrm{mg}, 96 \%)$ as an oil; R_{f} [light petroleum ($40-$ $60^{\circ} \mathrm{C}$)-ether ($9: 1$)] 0.2; $v_{\text {max }}$ (film, $\mathrm{CDCl}_{3} / \mathrm{cm}^{-1} 3500-3200$ $(\mathrm{OH}) ; \delta_{\mathrm{H}}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) 7.6-7.3(5 \mathrm{H}, \mathrm{m}, \mathrm{SPh}), 3.8(1 \mathrm{H}, \mathrm{dd}$, $J 10.6$ and $2.68, \mathrm{CHO}), 3.65\left(1 \mathrm{H}\right.$, dd, $J 10.8$ and $7.8, \mathrm{CH}_{\mathrm{A}^{-}}$ $\left.\mathrm{H}_{\mathrm{B}} \mathrm{O}\right), 3.45\left(1 \mathrm{H}, \mathrm{dt}, J 7.8\right.$ and $\left.3.1, \mathrm{CH}_{\mathrm{A}} H_{\mathrm{B}} \mathrm{O}\right), 3.3(1 \mathrm{H}, \mathrm{d}, J 2.7$ $\mathrm{CHOH}), 2.19\left(1 \mathrm{H}, \mathrm{dd}, \mathrm{J} 8.0\right.$ and $\left.3.1, \mathrm{CH}_{2} \mathrm{OH}\right)$ and $2.04-1.20$ $\left(10 \mathrm{H}, \mathrm{m}, 5 \times \mathrm{CH}_{2}\right) ; \delta_{\mathrm{C}}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) 137.2(\mathrm{~m}-\mathrm{SPh}), 130.0^{*}$ $(i-\mathrm{SPh}), 129.1(p-\mathrm{SPh}), 128.9(o-\mathrm{SPh}), 75.2(\mathrm{CHOH}), 62.7^{*}$ $\left(\mathrm{CH}_{2} \mathrm{O}\right)$, 59.3* (CSPh), 30.9*, 30.7*, 26.0*, 21.7* and 21.6* $\left(5 \times \mathrm{CH}_{2}\right)$ (Found M^{+}, 252.1181. $\mathrm{C}_{14} \mathrm{H}_{20} \mathrm{O}_{2} \mathrm{~S}$ requires M , 252.1183); $m / z 191.1\left(60 \%, \mathrm{C}_{6} \mathrm{H}_{10} \mathrm{SPh}\right), 109$ (30, SPh), 81.1 (100 , $\mathrm{C}_{6} \mathrm{H}_{9}$).

3-Hydroxy-3-[1'-(phenylsulfany)cyclohexyl]propanol 8, $n=2$

$\mathrm{LiAlH}_{4}(0.18 \mathrm{~g}, 4.7 \mathrm{mmol})$ was added to a stirred solution of the ester $37(0.76 \mathrm{~g}, 2.36 \mathrm{mmol})$ in ether $(100 \mathrm{ml})$ at $0^{\circ} \mathrm{C}$. The solution was stirred for 2 hours and poured onto an ice-brine solution. $\mathrm{NaOH}(20 \mathrm{ml}, 10 \%)$ was added and the solution was extracted with ether ($3 \times 100 \mathrm{ml}$). The combined organic layers were dried $\left(\mathrm{MgSO}_{4}\right)$ and evaporated under reduced pressure. The residue was purified by flash column chromatography on silica gel eluting with ether to give the $\operatorname{diol} 8, n=2(0.56 \mathrm{~g}, 90 \%)$ as an oil; R_{f} [ether] $0.40 ; v_{\text {max }}$ (film, CDCl_{3})/ $\mathrm{cm}^{-1} 3500-3200$ (broad OH$)$; $\delta_{\mathrm{H}}\left(250 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) 7.53-7.26(5 \mathrm{H}, \mathrm{m}, \mathrm{SPh})$, 3.88-3.74 ($2 \mathrm{H}, \mathrm{m}, \mathrm{CHOH}$ and OH$), 3.54-3.44(2 \mathrm{H}, \mathrm{m}$, $\left.\mathrm{CH}_{2} \mathrm{OH}\right), 2.77(1 \mathrm{H}, \mathrm{s}, \mathrm{OH})$ and 1.96-1.2 $\left(12 \mathrm{H}, \mathrm{m}, \mathrm{C}_{5} \mathrm{H}_{10}\right.$ and $\left.\mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{OH}\right) ; \delta_{\mathrm{C}}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) 137.2(m-\mathrm{SPh}), 130.0^{*}$ $(i-\mathrm{SPh}), 129.1(p-\mathrm{SPh}), 128.9(o-\mathrm{SPh}), 75.1(\mathrm{CHOH}), 62.2^{*}$ $\left(\mathrm{CH}_{2} \mathrm{O}\right), 61.8^{*}$ (CSPh), 32.1*, 30.4*, 29.5*, 26.2*, 21.8* and 21.7* $\left(6 \times \mathrm{CH}_{2}\right)$ (Found: M^{+}, 266.1333. $\mathrm{C}_{15} \mathrm{H}_{22} \mathrm{O}_{2}$ S requires M , 266.1340); $m / z 157.1$ (82%, M - SPh).

4-[1'-(Phenylsulfanyl)cyclohexyl]butane-1,4-diol 8, $\boldsymbol{n}=3$

$\mathrm{HCl}(2 \mathrm{ml}, 3 \mathrm{M})$ was added to a stirred solution of the acetal 37 , $n=3(0.14 \mathrm{~g}, 0.39 \mathrm{mmol})$ in EtOH -water $(5 \mathrm{ml}, 1: 1)$. The solution was stirred for 1 hour. $\mathrm{Na}_{2} \mathrm{CO}_{3}$ (solid) was added (until the $\mathrm{pH}=7) . \mathrm{H}_{2} \mathrm{O}(50 \mathrm{ml})$ was added and the solution was extracted with ether $(3 \times 100 \mathrm{ml})$. The combined organic layers were dried $\left(\mathrm{MgSO}_{4}\right)$ and evaporated under reduced pressure. The residue was purified by flash column chromatography on silica gel eluting with ether to give the $\operatorname{diol} \mathbf{8}, n=3(0.12 \mathrm{~g}, 99 \%)$ as an oil; R_{f} [ether] 0.45; $v_{\text {max }}\left(\right.$ film, $\left.\mathrm{CDCl}_{3}\right) / \mathrm{cm}^{-1} 3600-3200 ; \delta_{\mathrm{H}}(400$ $\mathrm{MHz}, \mathrm{CDCl}_{3}$) $7.49-7.25(5 \mathrm{H}, \mathrm{m}, \mathrm{SPh}), 3.67-3.54(3 \mathrm{H}, \mathrm{m}, \mathrm{OH}$ and $\mathrm{CH}_{2} \mathrm{OH}$), 3.27-3.21 ($\left.1 \mathrm{H}, \mathrm{d}, \mathrm{J} 10.2, \mathrm{CHOH}\right), 2.96-2.88$ $(1 \mathrm{H}, \mathrm{br} \mathrm{s}, \mathrm{OH})$ and $2.00-1.12\left(14 \mathrm{H}, \mathrm{m}, 7 \times \mathrm{CH}_{2}\right) ; \delta_{\mathrm{C}}(100 \mathrm{MHz}$, $\left.\mathrm{CDCl}_{3}\right) 137.22$ (m-SPh), 130.0* (i-SPh), 129.0 ($p-\mathrm{SPh}$), 128.8 (o-SPh), 74.9 (CHO), 62.8* $\left(\mathrm{CH}_{2} \mathrm{O}\right), 61.7^{*}(\mathrm{CSPh}), 30.8^{*}$,
30.7*, 29.5*, 27.5*, 26.2*, 21.8* and 21.8* $\left(7 \times \mathrm{CH}_{2}\right)$ (Found M^{+}, 280.1502. $\mathrm{C}_{16} \mathrm{H}_{24} \mathrm{O}_{2} \mathrm{~S}$ requires $\mathrm{M}, 280.1496$); m/z 280.2 ($80 \%, \mathrm{M}$), $262.1\left(\mathrm{M}-\mathrm{H}_{2} \mathrm{O}\right)$, 191.1 ($100, \mathrm{C}_{6} \mathrm{H}_{10} \mathrm{SPh}$), 171.1 (25, $\mathrm{M}-\mathrm{SPh}), 110.0,(80, \mathrm{PhSH})$ and $81.1\left(90, \mathrm{C}_{6} \mathrm{H}_{9}\right)$.

5-[1'-(Phenylsulfanyl)cyclohexyl]pentane-1,5-diol 8, $n=4$

In the same way as diol $\mathbf{8 ,} n=3$, the acetal $37, n=4(0.68 \mathrm{~g}, 1.85$ $\mathrm{mmol})$ and $\mathrm{HCl}(5 \mathrm{ml}, 3 \mathrm{M})$ in $\mathrm{EtOH}-\mathrm{H}_{2} \mathrm{O}$ ($10 \mathrm{ml}, 1: 1$ ratio) gave, after flash column chromatography on silica gel eluting with ether, the diol 8, $n=4(0.52 \mathrm{~g}, 96 \%)$ as an oil; R_{f} [ether] $0.45 ; v_{\text {max }}$ (film, CDCl_{3})/ $\mathrm{cm}^{-1} 3600-3250(\mathrm{OH}) ; \delta_{\mathrm{H}}(400 \mathrm{MHz}$, CDCl_{3}) $7.54-7.25(5 \mathrm{H}, \mathrm{m}, \mathrm{SPh}), 3.60\left(2 \mathrm{H}, \mathrm{t}, J 6.2, \mathrm{CH}_{2} \mathrm{O}\right), 3.24$ $(1 \mathrm{H}, \mathrm{d}, J 9.8, \mathrm{CHOH}), 3.19(1 \mathrm{H}, \mathrm{br} \mathrm{s}, \mathrm{OH})$ and $2.04-1.13$ $\left(16 \mathrm{H}, \mathrm{m}, 8 \times \mathrm{CH}_{2}\right) ; \delta_{\mathrm{C}}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) 137.2(\mathrm{~m}-\mathrm{SPh})$, $130.1^{*}(i-\mathrm{SPh}), 129.0(p-\mathrm{SPh}), 128.8(o-\mathrm{SPh}), 74.7(\mathrm{CHOH})$, 62.7* ($\mathrm{CH}_{2} \mathrm{O}$), 61.8* (CSPh), 32.7*, 30.6*, 30.1*, 29.6*, 26.3*, 23.6*, 21.9* and 21.8* $\left(8 \times \mathrm{CH}_{2}\right)$ (Found M^{+}, 294.1651. $\mathrm{C}_{17} \mathrm{H}_{26} \mathrm{O}_{2} \mathrm{~S}$ requires M, 294.1653); m/z 294.1 (40%, M), 191.1 (100, $\left.\mathrm{C}_{6} \mathrm{H}_{10} \mathrm{SPh}\right)$, 185.2 (20, M - SPh), $109.0(20, \mathrm{PhSH})$ and $81.1\left(70, \mathrm{C}_{6} \mathrm{H}_{9}\right)$.

6-[1'-(Phenylsulfanyl)cyclohexyl]hexane-1,6-diol 8, $\boldsymbol{n}=5$

In the same way as diol $\mathbf{8}, n=3$, the acetal $\mathbf{3 7}, n=5(3.5 \mathrm{~g}, 9.21$ $\mathrm{mmol})$ and $\mathrm{HCl}(8 \mathrm{ml}, 3 \mathrm{M})$ in $\mathrm{EtOH}-\mathrm{H}_{2} \mathrm{O}(40 \mathrm{ml}, 1: 1)$ gave, after flash column chromatography on silica gel eluting with ether, the $\operatorname{diol} \mathbf{8}, n=5(2.6 \mathrm{~g}, 94 \%)$ as an oil; R_{f} [ether] $0.5 ; v_{\text {max }}$ (film, $\left.\mathrm{CDCl}_{3}\right) / \mathrm{cm}^{-1} 3600-3300(\mathrm{OH}) ; \delta_{\mathrm{H}}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$ 7.49-7.40 ($5 \mathrm{H}, \mathrm{m}, \mathrm{SPh}), 3.60\left(2 \mathrm{H}, \mathrm{t}, J 6.6, \mathrm{CH}_{2} \mathrm{O}\right), 3.22(1 \mathrm{H}$, dd, $J 9.8$ and $1.4, \mathrm{CHOH}), 3.20(1 \mathrm{H}, \mathrm{br} \mathrm{s}, \mathrm{OH})$ and $2.01-1.19$ $\left(18 \mathrm{H}, \mathrm{m}, 8 \times \mathrm{CH}_{2}\right) ; \delta_{\mathrm{C}}\left(62.5 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) 137.2(m-\mathrm{SPh})$, 130.1* ($i-\mathrm{SPh}$), 128.9 ($p-\mathrm{SPh}$), $128.8(o-\mathrm{SPh}), 74.6(\mathrm{CHOH})$, 62.8* ($\left.\mathrm{CH}_{2} \mathrm{O}\right), 61.9^{*}$ (CSPh), 32.6*, 30.5*, 29.6*, 27.1*, 26.3*, $25.9^{*}, 21.9^{*}$ and $21.8^{*}\left(8 \times \mathrm{CH}_{2}\right)$ (Found M^{+}, 308.1817. $\mathrm{C}_{18} \mathrm{H}_{28} \mathrm{O}_{2} \mathrm{~S}$ requires M, 308.1809); m/z 308.2 ($25 \%, \mathrm{M}$), 199.1 ($25, \mathrm{M}-\mathrm{SPh}$), 191.1 ($90, \mathrm{C}_{6} \mathrm{H}_{10} \mathrm{SPh}$), 109.0 (40, PhS), 83.1 $\left(100, \mathrm{C}_{6} \mathrm{H}_{11}\right)$ and $81.0\left(90, \mathrm{C}_{6} \mathrm{H}_{9}\right)$.

7-[1'-(Phenylsulfanyl)cyclohexy]]heptane-1,7-diol 8, $n=6$

In the same way as diol $\mathbf{8}, n=3$, the acetal $37, n=6(74 \mathrm{mg}, 0.23$ $\mathrm{mmol})$ and $\mathrm{HCl}(5 \mathrm{ml}, 3 \mathrm{M})$ in $\mathrm{EtOH}-\mathrm{H}_{2} \mathrm{O}$ ($10 \mathrm{ml}, 1: 1$ ratio) gave, after flash column chromatography on silica gel eluting with ether, the diol $\mathbf{8}, n=6(67 \mathrm{mg}, 88 \%)$ as an oil; R_{f} [ether] $0.45 ; v_{\text {max }}$ (film, $\left.\mathrm{CDCl}_{3}\right) / \mathrm{cm}^{-1} 3600-3250(\mathrm{OH}) ; \delta_{\mathrm{H}}(250 \mathrm{MHz}$, $\left.\mathrm{CDCl}_{3}\right) 7.52-7.24(5 \mathrm{H}, \mathrm{m}, \mathrm{SPh}), 3.60\left(2 \mathrm{H}, \mathrm{t}, J 6.6, \mathrm{CH}_{2} \mathrm{O}\right), 3.21$ $(1 \mathrm{H}, \mathrm{dd}, J 9.4$ and $2.0, \mathrm{CHOH})$ and $1.99-1.09(21 \mathrm{H}, \mathrm{m}, 10 \times$ CH_{2} and OH); $\delta_{\mathrm{C}}\left(62.5 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) 137.2$ ($\mathrm{m}-\mathrm{SPh}$), 130.2 $(i-\mathrm{SPh}), 129.0(p-\mathrm{SPh}), 128.8(o-\mathrm{SPh}), 74.7(\mathrm{CHOH}), 63.0$ ($\mathrm{CH}_{2} \mathrm{O}$), 62.0 (CSPh), 32.7, 30.6, 30.5, 29.6, 29.5, 27.4, 26.3, $25.6,21.9$ and $21.8\left(10 \times \mathrm{CH}_{2}\right)$.

9-[1'-(Phenylsulfanyl)cyclohexyl]nonane-1,9-diol 8, $\boldsymbol{n}=8$

In the same way as diol $\mathbf{8}, n=3$, the acetal $\mathbf{3 7}, n=8(80 \mathrm{mg}, 0.23$ $\mathrm{mmol})$ and $\mathrm{HCl}(5 \mathrm{ml}, 3 \mathrm{M})$ in $\mathrm{EtOH}-\mathrm{H}_{2} \mathrm{O}(10 \mathrm{ml}, 1: 1$ ratio $)$ gave, after flash column chromatography on silica gel eluting with ether, the $\operatorname{diol} \mathbf{8}, n=8(78 \mathrm{mg}, 100 \%)$ as an oil; R_{f} [ether] 0.4 $v_{\text {max }}\left(\right.$ film, $\left.\mathrm{CDCl}_{3}\right) / \mathrm{cm}^{-1} 3600-3250(\mathrm{OH}) ; \delta_{\mathrm{H}}\left(250 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$ $7.50-7.25(5 \mathrm{H}, \mathrm{m}, \mathrm{SPh}), 3.60\left(2 \mathrm{H}, \mathrm{t}, J 6.6, \mathrm{CH}_{2} \mathrm{O}\right), 3.22(1 \mathrm{H}, \mathrm{d}$, $J 9.9$ and $1.0, \mathrm{CHOH}), 3.07(1 \mathrm{H}, \mathrm{s}, \mathrm{OH})$ and $1.98-1.18(24 \mathrm{H}$, $\left.\mathrm{m}, 12 \times \mathrm{CH}_{2}\right) ; \delta_{\mathrm{C}}\left(62.5 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) 137.3(\mathrm{~m}-\mathrm{SPh}), 130.2$ $(i-\mathrm{SPh}), 129.0(p-\mathrm{SPh}), 128.8(o-\mathrm{SPh}), 74.7(\mathrm{CHOH}), 63.0$ ($\mathrm{CH}_{2} \mathrm{O}$), 62.0 (CSPh), 32.8, 30.6, 29.7, 29.6, 29.5, 29.4, 27.4, $26.3,25.7$ and $21.9\left(12 \times \mathrm{CH}_{2}\right)$.

12-[1'-(Phenylsulfanyl)cyclohexyl]dodecane-1,12-diol 8, $\boldsymbol{n}=\mathbf{1 1}$

In the same way as diol $\mathbf{8}, n=3$, the acetal $\mathbf{3 7}, n=12(107 \mathrm{mg}$, $0.23 \mathrm{mmol})$ and $\mathrm{HCl}(5 \mathrm{ml}, 3 \mathrm{M})$ in $\mathrm{EtOH}-\mathrm{H}_{2} \mathrm{O}(10 \mathrm{ml}, 1: 1$ ratio) gave, after flash column chromatography on silica gel
eluting with ether, the $\operatorname{diol} \mathbf{8}, n=8(80 \mathrm{mg}, 89 \%)$ as an oil; R_{f} [ether] 0.50; $v_{\text {max }}$ (film, $\left.\mathrm{CDCl}_{3}\right) / \mathrm{cm}^{-1} 3600-3250(\mathrm{OH}) ; \delta_{\mathrm{H}}(250$ $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right) 7.54-7.25(5 \mathrm{H}, \mathrm{m}, \mathrm{SPh}), 3.60(2 \mathrm{H}, \mathrm{t}, J 6.6$, $\left.\mathrm{CH}_{2} \mathrm{O}\right), 3.22(1 \mathrm{H}, \mathrm{dd}, J 11.2$ and $1.9, \mathrm{CHOH})$ and $2.39-1.09$ $\left(32 \mathrm{H}, \mathrm{m}, 15 \times \mathrm{CH}_{2}\right.$ and $\left.2 \times \mathrm{OH}\right) ; \delta_{\mathrm{C}}\left(62.5 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) 137.2$ ($o-\mathrm{SPh}$), 130.1 ($i-\mathrm{SPh}$), 128.9 ($p-\mathrm{SPh}$), 128.6 ($\mathrm{m}-\mathrm{SPh}$), 74.6 $(\mathrm{CHOH}), 62.9(\mathrm{CSPh}), 61.8\left(\mathrm{CH}_{2} \mathrm{O}\right), 32.6,30.4,29.7,29.5,29.3$, $27.3,26.1,25.6,21.8$ and $21.7\left(15 \times \mathrm{CH}_{2}\right)$.

6-Hydroxy-6-[1'-(phenylsulfanyl)cyclohexyl]hexyl toluene-psulfonate $10, n=5$

Toluene- p-sulfonyl chloride ($72 \mathrm{mg}, 3.25 \mathrm{mmol}$) was added to a stirred solution of diol $8, n=5(0.1 \mathrm{~g}, 3.25 \mathrm{mmol})$ in pyridine $(1 \mathrm{ml})$. The solution was stirred for 12 hours. Ether $(20 \mathrm{ml})$ was added and the solution was extracted with $\mathrm{HCl}(10 \mathrm{ml}, 3 \mathrm{M})$ and evaporated under reduced pressure. The residue was purified by flash chromatography on a silica gel column with light petroleum $\left(40-60^{\circ} \mathrm{C}\right)$-ether ($1: 1$) to give the toluene- psulfonate $\mathbf{1 0}, n=5(0.135 \mathrm{~g}, 90 \%)$ as an oil; R_{f} [light petroleum $\left(40-60^{\circ} \mathrm{C}\right.$)-ether ($1: 1$)] $0.3 ; v_{\text {max }}$ (film, $\left.\mathrm{CDCl}_{3}\right) / \mathrm{cm}^{-1} 3200(\mathrm{OH})$; $\delta_{\mathrm{H}}\left(250 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) 7.78\left(2 \mathrm{H}, \mathrm{d}, J 8.3, o-\mathrm{SO}_{2} \mathrm{Ar}\right), 7.51-7.28$ ($7 \mathrm{H}, \mathrm{m}, \mathrm{SPh}$ and $m-\mathrm{SO}_{2} \mathrm{Ar}$), $3.93\left(2 \mathrm{H}, \mathrm{t}, J 6.5, \mathrm{CH}_{2} \mathrm{O}\right.$), 3.18 $(1 \mathrm{H}, \mathrm{dd}, J 9.3$ and $2.2, \mathrm{CHOH}), 3.08(1 \mathrm{H}, \mathrm{br} \mathrm{s}, \mathrm{OH}), 2.42(3 \mathrm{H}$, $\left.\mathrm{s}, \mathrm{CH}_{3}, \mathrm{Ar}\right)$ and 2.04-1.10 $\left(20 \mathrm{H}, \mathrm{m}, 10 \times \mathrm{CH}_{2}\right) ; \delta_{\mathrm{C}}(62.5 \mathrm{MHz}$, CDCl_{3}) 144.6* (i-OAr), 137.2 (m-SPh), 133.2 (i-SPh), 130.1* $\left(i-\mathrm{CCH}_{3}, \mathrm{Ar}\right), 129.8(o-\mathrm{SPh}), 129.0(p-\mathrm{SPh}), 128.8\left(o-\mathrm{SO}_{2} \mathrm{Ar}\right)$, $127.8\left(m-\mathrm{SO}_{2} \mathrm{Ar}\right), 74.5(\mathrm{CHOH}), 70.6^{*}\left(\mathrm{CH}_{2} \mathrm{O}\right), 61.8^{*}(\mathrm{CSPh})$, 30.6*, 30.3*, 29.6*, 28.8*, 26.7*, 26.2*, 25.5*, 21.8* and 21.8* $\left(10 \times \mathrm{CH}_{2}\right)$ and $21.6\left(\mathrm{CH}_{3}, \mathrm{Ar}\right)$ (Found M^{+}, 462.1887. $\mathrm{C}_{25} \mathrm{H}_{34}{ }^{-}$ $\mathrm{O}_{4} \mathrm{~S}_{2}$ requires $\mathrm{M}, 462.1898$); $m / z 462.1$ (2%, M), 353.2 (40 , $\mathrm{M}-\mathrm{SPh}), 191.1\left(55, \mathrm{C}_{6} \mathrm{H}_{10} \mathrm{SPh}\right), 91.1\left(100, \mathrm{C}_{7} \mathrm{H}_{7}\right)$ and 81.1 (90, $\mathrm{C}_{6} \mathrm{H}_{9}$).

5-(Phenylsulfanyl)-1-oxaspiro[5.5]undecane 11

Toluene- p-sulfonic acid ($3 \mathrm{mg}, 17 \mu \mathrm{~mol}$) was added to a stirred solution of diol $8, n=3(25 \mathrm{mg}, 89 \mu \mathrm{~mol})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(2 \mathrm{ml})$. The solution was refluxed for 5 min . The solution was allowed to cool to room temperature and filtered through a silica plug. The solvent was removed under reduced pressure. The residue was purified by flash column chromatography on silica gel eluting with light petroleum $\left(40-60^{\circ} \mathrm{C}\right)$-ether $(9: 1)$ to give the tetrahydropyran 11 ($23.1 \mathrm{mg}, 99 \%$) as an oil; R_{f} [light petroleum ($40-60^{\circ} \mathrm{C}$)-ether (9:1)] 0.4; $v_{\text {max }}$ (film, $\left.\mathrm{CDCl}_{3}\right) / \mathrm{cm}^{-1} 1600(\mathrm{SPh})$; $\delta_{\mathrm{H}}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) 7.49-7.17(5 \mathrm{H}, \mathrm{m}, \mathrm{SPh}), 3.66-3.56(2 \mathrm{H}$, $\left.\mathrm{m}, \mathrm{CH}_{2} \mathrm{O}\right), 3.03(1 \mathrm{H}, \mathrm{dd}, J 11.2$ and $4.3, \mathrm{CHSPh})$ and $2.22-1.05$ $\left(14 \mathrm{H}, \mathrm{m}, 7 \times \mathrm{CH}_{2}\right) ; \delta_{\mathrm{C}}\left(62.5 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) 136.1^{*}(i-\mathrm{SPh}), 13.4$ (m-SPh), 128.9 ($p-\mathrm{SPh}$), 126.6 ($o-\mathrm{SPh}$), 75.4* (CO), 60.0* ($\mathrm{CH}_{2} \mathrm{O}$), 55.5 (CHSPh), 36.3*, 27.2*, 26.4*, 25.9*, 21.3* and 20.6* $\left(6 \times \mathrm{CH}_{2}\right)$ (Found M^{+}, 262.1395. $\mathrm{C}_{16} \mathrm{H}_{22} \mathrm{OS}$ requires M, 262.1391); $m / z 262.1$ ($25 \%, M$), 165.1 ($100, \mathrm{C}_{4} \mathrm{H}_{8} \mathrm{SPh}$), 136.0 (80, $\left.\mathrm{C}_{2} \mathrm{H}_{3} \mathrm{SPh}\right)$ and $109.0(5, \mathrm{PhS})$.

2-[1'-(Phenylsulfanyl)cyclohexyl]tetrahydrofuran 12

In the same way as toluene- p-sulfonate $\mathbf{1 0}, n=5$, the diol $\mathbf{8}$, $n=3(70 \mathrm{mg}, 0.25 \mathrm{mmol})$ and toluene- p-sulfonyl chloride (52 $\mathrm{mg}, 0.25 \mathrm{mmol}$) gave, after flash column chromatography on silica gel eluting with light petroleum $\left(40-60^{\circ} \mathrm{C}\right)$-ether $(9: 1)$, the tetrahydrofuran 12 ($65 \mathrm{mg}, 98 \%$) as an oil; R_{f} [light petroleum ($40-60^{\circ} \mathrm{C}$)-ether ($9: 1$)] 0.2; $v_{\text {max }}$ (film, CDCl_{3}) $/ \mathrm{cm}^{-1} 1600$ $(\mathrm{SPh}) ; \delta_{\mathrm{H}}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) 7.56-7.24(5 \mathrm{H}, \mathrm{m}, \mathrm{SPh}), 3.89-3.82$ $\left(1 \mathrm{H}, \mathrm{dt}, J 6.6\right.$ and $\left.6.7, \mathrm{OCH}_{\mathrm{A}} \mathrm{H}_{\mathrm{B}}\right), 3.72-3.70\left(2 \mathrm{H}, \mathrm{m}, \mathrm{OCH}_{\mathrm{A}} H_{\mathrm{B}}\right.$ and CHO) and $2.08-1.18\left(14 \mathrm{H}, \mathrm{m}, 7 \times \mathrm{CH}_{2}\right) ; \delta_{\mathrm{C}}(100 \mathrm{MHz}$, $\left.\mathrm{CDCl}_{3}\right) 137.3(m-\mathrm{SPh}), 131.8^{*}(i-\mathrm{SPh}), 128.4$ ($o-$ and $p-\mathrm{SPh}$), 84.4 (CHO), $68.7^{*}\left(\mathrm{CH}_{2} \mathrm{O}\right), 56.6^{*}(\mathrm{CSPh}), 32.1^{*}, 30.2^{*}, 26.6^{*}$, 26.3*, 26.0*, 21.8* and 21.7* ($7 \times \mathrm{CH}_{2}$) (Found M ${ }^{+}$, 262.1389. $\mathrm{C}_{16} \mathrm{H}_{22} \mathrm{OS}$ requires M, 262.1391); m/z 262.1 (30%, M), 191.1 ($100, \mathrm{C}_{6} \mathrm{H}_{10} \mathrm{SPh}$), 153.1 ($90, \mathrm{M}-\mathrm{SPh}$), 123.0 (20, $\mathrm{CH}_{2} \mathrm{SPh}$), $81.1\left(65, \mathrm{C}_{6} \mathrm{H}_{9}\right)$ and $71.1\left(65, \mathrm{M}-\mathrm{C}_{6} \mathrm{H}_{10} \mathrm{SPh}\right)$.

TsOH rearrangement of THF 12 to give the THP 11

In the same way as THP 11, the tetrahydrofuran $12(50 \mathrm{mg}$, 0.20 mmol) and toluene- p-sulfonic acid ($37 \mathrm{mg}, 0.20 \mathrm{mmol}$) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(3 \mathrm{ml})$ gave, after flash column chromatography on silica gel eluting with light petroleum ($40-60^{\circ} \mathrm{C}$)-ether $(9: 1)$, the tetrahydropyran $11(49.5 \mathrm{mg}, 99 \%)$ as an oil; identical spectroscopically to that obtained previously.

[1-(Phenylsulfanyl)cyclohexyl]ethene 16

$\mathrm{n}-\mathrm{BuLi}(3.63 \mathrm{ml}, 1.3 \mathrm{M}$ in hexanes, 4.73 mmol) was added to a solution of methyltriphenylphosphonium iodide $(1.16 \mathrm{~g}, 4.51$ $\mathrm{mmol})$ in THF (50 ml) at $-78^{\circ} \mathrm{C}$. The solution was stirred for 5 min . A solution of the aldehyde $\mathbf{1 5}(1.0 \mathrm{~g}, 4.51 \mathrm{mmol})$ in THF $(10 \mathrm{ml})$ was added. The solution was stirred for 1 h . Saturated $\mathrm{NH}_{4} \mathrm{Cl}(5 \mathrm{ml})$ was added and the solution was allowed to warm to room temperature and extracted with ether $(3 \times 50 \mathrm{ml})$. The combined organic layers were dried $\left(\mathrm{MgSO}_{4}\right)$ and evaporated under reduced pressure. The residue was purified by flash column chromatography on silica gel eluting with light petroleum ($40-60{ }^{\circ} \mathrm{C}$)-ether ($9: 1$) to give the allylic sulfide $\mathbf{1 6}(0.94 \mathrm{~g}, 95 \%)$ as an oil; R_{f} [light petroleum $\left(40-60^{\circ} \mathrm{C}\right)$-ether $\left.(9: 1)\right] 0.3 ; v_{\text {max }}$ (film, $\left.\mathrm{CDCl}_{3}\right) / \mathrm{cm}^{-1} 1660(\mathrm{C}=\mathrm{C}) ; \delta_{\mathrm{H}}\left(250 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) 7.51-$ $7.19(5 \mathrm{H}, \mathrm{m}, \mathrm{SPh}), 5.74(1 \mathrm{H}, \mathrm{dd}, J 17.7$ and 10.7, CH), 4.96 $\left(1 \mathrm{H}, \mathrm{dd}, J 10.7\right.$ and $\left.1.0, \mathrm{CH}_{\mathrm{A}} \mathrm{H}_{\mathrm{B}}\right), 4.57(1 \mathrm{H}, \mathrm{dd}, J 17.7$ and 1.0 , $\left.\mathrm{CH}_{\mathrm{A}} H_{\mathrm{B}}\right)$ and $1.75-1.20\left(10 \mathrm{H}, \mathrm{m}, 5 \times \mathrm{CH}_{2}\right)$ (Found M^{+}, 218.1132. $\mathrm{C}_{14} \mathrm{H}_{18} \mathrm{~S}$ requires $\mathrm{M}, 218.1129$); $m / z 218.1$ (20%, M), $109.1(95, \mathrm{PhS}$ and $\mathrm{M}-\mathrm{SPh})$ and $67.1\left(100, \mathrm{C}_{5} \mathrm{H}_{7}\right)$.

2-[1'-(Phenylsulfanyl)cyclohexyl]epoxyethane 17

In the same way as toluene- p-sulfonate $\mathbf{1 0}, n=5$ the $\operatorname{diol} \mathbf{8}, n=1$ $(0.16 \mathrm{~g}, 0.62 \mathrm{mmol})$ and toluene-p-sulfonyl chloride $(0.15 \mathrm{~g}$, 0.68 mmol) in pyridine (2 ml) gave, after flash column chromatography on silica gel eluting with light petroleum ($40-60^{\circ} \mathrm{C}$)ether ($1: 1$), the epoxide $\mathbf{1 7}(0.11 \mathrm{~g}, 80 \%)$ as an oil; R_{f} [light petroleum ($40-60^{\circ} \mathrm{C}$)-ether (1:1)] 0.5; $v_{\text {max }}$ (film, $\left.\mathrm{CDCl}_{3}\right) / \mathrm{cm}^{-1}$ $1600(\mathrm{SPh}) ; \delta_{\mathrm{H}}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) 7.39-7.19(5 \mathrm{H}, \mathrm{m}, \mathrm{SPh}), 3.40$ $\left(1 \mathrm{H}, \mathrm{dd}, J 10.5\right.$ and $\left.2.3, \mathrm{CH}_{\mathrm{A}} \mathrm{H}_{\mathrm{B}} \mathrm{O}\right), 3.32(1 \mathrm{H}$, dd, $J 13.8$ and 2.3, $\left.\mathrm{CH}_{\mathrm{A}} H_{\mathrm{B}} \mathrm{O}\right), 2.90\left(1 \mathrm{H}, \mathrm{dd}, J 13.8\right.$ and $\left.10.5, \mathrm{CHCH}_{2} \mathrm{O}\right)$ and 1.72-1.09 $\left(10 \mathrm{H}, \mathrm{m}, 5 \times \mathrm{CH}_{2}\right) ; \delta_{\mathrm{C}}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) 137.2$ (m-SPh), 130.6* ($i-\mathrm{SPh}$), 128.7 ($p-\mathrm{SPh}$), 128.7 ($o-\mathrm{SPh}$), 73.6 (CHO), 62.6* ($\mathrm{CH}_{2} \mathrm{O}$), 59.1* (CSPh), 36.7*, 30.7*, 30.4*, 25.2* and 21.7* $\left(5 \times \mathrm{CH}_{2}\right)$ (Found $\mathrm{M}^{+}, 234.1076 . \mathrm{C}_{14} \mathrm{H}_{18} \mathrm{OS}$ requires M, 234.1078); $m / z 282.1$ ($15 \%, \mathrm{M}$), 191.1 ($40, \mathrm{C}_{6} \mathrm{H}_{10} \mathrm{SPh}$), 173.1 ($5, \mathrm{M}-\mathrm{SPh})$ and $81.1\left(100, \mathrm{C}_{6} \mathrm{H}_{9}\right)$.

2-[1'-(Phenylsulfanyl)cyclohexyl]epoxyethane $\mathbf{1 7}$

$\mathrm{n}-\mathrm{BuLi}(2.37 \mathrm{ml}, 1.3 \mathrm{M}$ in hexanes, 3.28 mmol$)$ was added to a stirred solution of trimethylsulfonium iodide $(0.64 \mathrm{~g}, 3.13$ $\mathrm{mmol})$ in THF $(20 \mathrm{ml})$ at $-30^{\circ} \mathrm{C}$. A solution of aldehyde $\mathbf{1 5}$ $(0.69 \mathrm{~g}, 3.13 \mathrm{mmol})$ in THF (1 ml) was added. The solution was stirred for 1 hour. Saturated $\mathrm{NH}_{4} \mathrm{Cl}(5 \mathrm{ml})$ was added and the solution was extracted with ether $(3 \times 50 \mathrm{ml})$. The combined organic layers were dried $\left(\mathrm{MgSO}_{4}\right)$ and evaporated under reduced pressure. The residue was purified by flash column chromatography on silica gel eluting with light petroleum ($40-60^{\circ} \mathrm{C}$)-ether ($9: 1$) to give the epoxide $17(0.64 \mathrm{~g}, 89 \%)$ as an oil; identical spectroscopically to that obtained previously.

2-Cyclohexenyl-2-(phenylsulfanyl)ethanol 19

In the same way as THP $\mathbf{1 1}, n=2$ the diol $\mathbf{8}, n=1(59 \mathrm{mg}, 59$ $\mu \mathrm{mol})$ and toluene- p-sulfonic acid ($2 \mathrm{mg}, 11 \mu \mathrm{~mol}$) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ $(1 \mathrm{ml})$ gave, after flash column chromatography on silica gel eluting with light petroleum $\left(40-60^{\circ} \mathrm{C}\right)$-ether $(1: 1)$, the allylic sulfide 19 ($13.7 \mathrm{mg}, 96 \%$) as an oil; R_{f} [light petroleum ($40-$ $60^{\circ} \mathrm{C}$)-ether ($1: 1$)] 0.5 ; $v_{\text {max }}$ (film, $\mathrm{CDCl}_{3} / \mathrm{cm}^{-1} 3250(\mathrm{OH})$; $\delta_{\mathrm{H}}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) 7.40-7.22(5 \mathrm{H}, \mathrm{m}, \mathrm{SPh}), 5.46(1 \mathrm{H}, \mathrm{s}$, $\mathrm{CH}=\mathrm{C}), 3.78-3.80(1 \mathrm{H}, \mathrm{m}, \mathrm{CHSPh}), 3.66\left(1 \mathrm{H}, \mathrm{q}, J 6.9, \mathrm{CH}_{\mathrm{A}^{-}}\right.$
$\left.\mathrm{H}_{\mathrm{B}} \mathrm{OH}\right), 3.62\left(1 \mathrm{H}, \mathrm{q}, J 6.9, \mathrm{CH}_{\mathrm{A}} H_{\mathrm{B}} \mathrm{OH}\right), 2.15-2.07(2 \mathrm{H}, \mathrm{m}$, $\left.\mathrm{CH}_{2}=\mathrm{C}\right), 1.98-1.93\left(2 \mathrm{H}, \mathrm{m}, \mathrm{CH}_{2}=\mathrm{C}\right), 1.91(1 \mathrm{H}, \mathrm{t}, J 6.9, \mathrm{OH})$ and $1.87-1.50\left(4 \mathrm{H}, \mathrm{m}, 2 \times \mathrm{CH}_{2}\right) ; \delta_{\mathrm{C}}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) 133.1$ (m-SPh), 128.7 (p-SPh), 127.4 ($o-S P h$), $126.3(\mathrm{CH}=\mathrm{C})$, 62.6^{*} $\left(\mathrm{CH}_{2} \mathrm{OH}\right), 58.5(\mathrm{CHSPh}), 26.0^{*}$ and $25.2^{*}\left(2 \times \mathrm{CH}_{2}\right), 22.6^{*}$ and 22.2* $\left(2 \times \mathrm{CH}_{2}\right)$ (Found M^{+}, 234.1075. $\mathrm{C}_{14} \mathrm{H}_{18} \mathrm{OS}$ requires M , 234.1078); $\mathrm{m} / \mathrm{z} 234.1$ ($15 \%, \mathrm{M}$), 203.1 ($30, \mathrm{M}-\mathrm{CH}_{2} \mathrm{OH}$), 109.0 $(30, \mathrm{SPh})$ and $81.1\left(100, \mathrm{C}_{6} \mathrm{H}_{9}\right)$.

TsOH rearrangement of epoxide 17 to the allylic sulfide 19

In the same way as THP 11, $n=2$ the epoxide $\mathbf{1 7}(20 \mathrm{mg}, 85$ $\mu \mathrm{mol}$) and toluene- p-sulfonic acid ($4 \mathrm{mg}, 17 \mu \mathrm{~mol}$) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ $(1 \mathrm{ml})$ gave, after flash column chromatography on silica gel eluting with light petroleum $\left(40-60^{\circ} \mathrm{C}\right)$-ether ($1: 1$), the allylic sulfide 19 ($19 \mathrm{mg}, 100 \%$) as an oil; identical spectroscopically to that obtained previously.

Ethyl 3-hydroxy-3-[1'-(phenylsulfanyl)cyclohexyl]propanoate 25

n -BuLi ($8.46 \mathrm{ml}, 1.3 \mathrm{M}$ in hexanes, 11 mmol) was added to diisopropylamine ($1.41 \mathrm{~g}, 1.90 \mathrm{ml}, 14 \mathrm{mmol}$) in THF (50 ml) at $-78^{\circ} \mathrm{C}$. The solution was stirred for 30 min . Ethyl acetate (0.88 $\mathrm{g}, 0.98 \mathrm{ml}, 10 \mathrm{mmol}$) in THF (3 ml) was added slowly to this solution. The solution was stirred for 30 min . The aldehyde $\mathbf{1 5}$ ($2 \mathrm{~g}, 9 \mathrm{mmol}$) in THF (10 ml) was added slowly. The solution was stirred for a further 30 min . Saturated $\mathrm{NH}_{4} \mathrm{Cl}(20 \mathrm{ml})$ was added and the solution was allowed to warm to room temperature. The solution was extracted with ether $(3 \times 100 \mathrm{ml})$. The combined organic layers were dried $\left(\mathrm{MgSO}_{4}\right)$ and evaporated under reduced pressure. The residue was purified by flash column chromatography on silica gel eluting with light petroleum ($40-60^{\circ} \mathrm{C}$)-ether ($9: 1$) to give the ester $25(3.17 \mathrm{~g}, 93 \%)$ as a solid, mp $70-71^{\circ} \mathrm{C}$ (from hexane); R_{f} [light petroleum (40$60{ }^{\circ} \mathrm{C}$)-ether (1:1)] 0.40; $v_{\text {max }}$ (film, $\left.\mathrm{CDCl}_{3}\right) / \mathrm{cm}^{-1} 1730\left(\mathrm{CO}_{2}\right)$; $\delta_{\mathrm{H}}\left(250 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) 7.53-7.25(5 \mathrm{H}, \mathrm{m}, \mathrm{SPh}), 4.16(2 \mathrm{H}, \mathrm{q}$, $\left.J 7.1, \mathrm{CH}_{2} \mathrm{CH}_{3}\right), 3.87(1 \mathrm{H}, \mathrm{d}, J 10.2, \mathrm{OH}), 3.08(1 \mathrm{H}, \mathrm{d}, J 3.1$, $\mathrm{OH}), 2.90\left(1 \mathrm{H}, \mathrm{dd}, J 15.7\right.$ and $\left.2.1, \mathrm{CH}_{\mathrm{A}} \mathrm{H}_{\mathrm{B}} \mathrm{C}=\mathrm{O}\right), 2.54(1 \mathrm{H}, \mathrm{dd}$, $J 15.7$ and $\left.10.3, \mathrm{CH}_{\mathrm{A}} H_{\mathrm{B}} \mathrm{C}=\mathrm{O}\right), 1.93-1.15\left(10 \mathrm{H}, \mathrm{m}, 5 \times \mathrm{CH}_{2}\right)$ and $1.27\left(3 \mathrm{H}, \mathrm{t}, J 7.1, \mathrm{CH}_{3}\right) ; \delta_{\mathrm{C}}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) 173.2^{*}$ ($\mathrm{C}=\mathrm{O}$), 137.3 (m - SPh), 131.9* (i-SPh), 129.0 (p-SPh), 128.8 ($m-\mathrm{SPh}$), $72.7(\mathrm{CHOH}), 60.7\left(\mathrm{CH}_{2} \mathrm{O}\right), 58.7^{*}(\mathrm{CSPh}), 36.4^{*}$, 30.3*, 30.1*, 25.9* and 21.7* $\left(5 \times \mathrm{CH}_{2}\right)$ and $14.2\left(\mathrm{CH}_{3}\right)$ (Found $\mathrm{M}^{+}, 308.1435 . \mathrm{C}_{17} \mathrm{H}_{24} \mathrm{O}_{3} \mathrm{~S}$ requires $\mathrm{M}, 308.1446$); m/z 199.1 (18%, M - SPh).

4-(Phenylsulfanyl)-1-oxaspiro[4.5]decane 26

In the same way as THP 11, the diol $\mathbf{8}, n=2(0.1 \mathrm{~g}, 0.37 \mathrm{mmol})$ and toluene- p-sulfonic acid ($22 \mathrm{mg}, 0.10 \mathrm{mmol}$) in THF (2 ml) gave, after flash column chromatography on silica gel eluting with light petroleum $\left(40-60^{\circ} \mathrm{C}\right)$-ether $(9: 1)$, the tetrahydrofuran $26(92 \mathrm{mg}, 99 \%)$ as an oil; R_{f} [light petroleum ($40-60^{\circ} \mathrm{C}$)ether (1:1)] 0.78; $v_{\text {max }}\left(\right.$ film, $\left.\mathrm{CDCl}_{3}\right) / \mathrm{cm}^{-1} 1600(\mathrm{SPh}) ; \delta_{\mathrm{H}}(250$ $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right) 7.47-7.17(5 \mathrm{H}, \mathrm{m}, \mathrm{SPh}), 3.97-3.86(1 \mathrm{H}, \mathrm{dt}, J 9.0$ and 5.0, $\left.\mathrm{OCH}_{\mathrm{A}} \mathrm{H}_{\mathrm{B}}\right), 3.86-3.77\left(1 \mathrm{H}, \mathrm{dt}, J 8.8\right.$ and $\left.6, \mathrm{OCH}_{\mathrm{A}} H_{\mathrm{B}}\right)$, 3.40-3.32 ($1 \mathrm{H}, \mathrm{t}, J 7.7$, CHSPh), 2.50-2.36 (1 H , ddt, $J 8.0,7.0$ and $\left.2.4, \mathrm{CH}_{\mathrm{C}} \mathrm{H}_{\mathrm{D}} \mathrm{CH}_{2} \mathrm{O}\right), 2.10-1.96(1 \mathrm{H}$, ddt, $J 10.0,9.9$ and 8.0 , $\mathrm{CH}_{\mathrm{C}} \mathrm{H}_{\mathrm{D}} \mathrm{CH}_{2} \mathrm{O}$) and 1.75-1.17 ($10 \mathrm{H}, \mathrm{m}, 5 \times \mathrm{CH}_{2}$) (Found M ${ }^{+}$, 248.1234. $\mathrm{C}_{15} \mathrm{H}_{20} \mathrm{OS}$ requires M, 248.1236); $\mathrm{m} / \mathrm{z} 150.0$ (100%, $\left.\mathrm{M}-\mathrm{C}_{6} \mathrm{H}_{10} \mathrm{O}\right), 135\left(60, \mathrm{C}_{2} \mathrm{H}_{2} \mathrm{SPh}\right), 117\left(95, \mathrm{M}-\mathrm{C}_{2} \mathrm{H}_{2} \mathrm{SPh}\right)$ and 109.0 (35, SPh).

1-Cyclohexenyl-3-(phenylsulfanyl)propanol 28

In the same way as the toluene- p-sulfonate $\mathbf{1 0}, n=5$, the diol $\mathbf{8}$, $n=2(0.1 \mathrm{~g}, 0.36 \mathrm{mmol})$ and toluene- p-sulfonyl chloride $(76 \mathrm{mg}$, 0.40 mmol) in pyridine (1 ml) gave, after column chromatography on silica eluting with light petroleum $\left(40-60^{\circ} \mathrm{C}\right)$ ether (6:4) the allylic alcohol 28 ($90.5 \mathrm{mg}, 97 \%$) as an oil; R_{f} [light petroleum ($40-60^{\circ} \mathrm{C}$)-ether (6:4)] 0.42; $v_{\max }$ (film, $\left.\mathrm{CDCl}_{3}\right) / \mathrm{cm}^{-1} 3400(\mathrm{OH}) ; \delta_{\mathrm{H}}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) 7.37-7.11(5 \mathrm{H}$,
$\mathrm{m}, \mathrm{SPh}), 5.67(1 \mathrm{H}, \mathrm{s}, \mathrm{C}=\mathrm{CH}), 4.11(1 \mathrm{H}, \mathrm{t}, J 7.0, \mathrm{CHOH}), 3.02-$ $2.92\left(2 \mathrm{H}, \mathrm{m}, \mathrm{CH}_{2} \mathrm{SPh}\right), 2.01-1.51\left(10 \mathrm{H}, \mathrm{m}, 5 \times \mathrm{CH}_{2}\right)$ and 1.64 $(1 \mathrm{H}, \mathrm{s}, \mathrm{OH}) ; \delta_{\mathrm{C}}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) 139.3^{*}(\mathrm{C}=\mathrm{CH})$, 136.5^{*} $(i-\mathrm{SPh}), 129.1(m-\mathrm{SPh}), 128.9(o-\mathrm{SPh}), 125.8(p-\mathrm{SPh}), 123.4$ ($\mathrm{CH}=\mathrm{C}$), $75.2(\mathrm{CHOH}), 34.2^{*}\left(\mathrm{CH}_{2}-\mathrm{SPh}\right), 30.8^{*}, 29.7^{*}, 24.9^{*}$, 23.6* and 22.6* $\left(5 \times \mathrm{CH}_{2}\right)$ (Found: M^{+}, 248.1237. $\mathrm{C}_{15} \mathrm{H}_{20} \mathrm{OS}$ requires M, 248.1235); $m / z 248.1(100 \%, \mathrm{M}), 139$ ($10, \mathrm{M}-\mathrm{SPh}$) and $81\left(40, \mathrm{M}-\mathrm{C}_{3} \mathrm{H}_{6} \mathrm{OSPh}\right)$.

3-Hydroxy-3-[1'-(phenylsulfanyl)cyclohexyl]propyl benzoate 31

Benzoyl chloride ($0.4 \mathrm{~g}, 0.27 \mathrm{ml}, 2.88 \mathrm{mmol}$) was added slowly to a stirred solution of diol $\mathbf{8}, n=2(0.9 \mathrm{~g}, 2.88 \mathrm{mmol})$, and $\mathrm{Et}_{3} \mathrm{~N}(0.29 \mathrm{~g}, 0.4 \mathrm{ml}, 2.88 \mathrm{mmol})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(30 \mathrm{ml})$. The solution was stirred for 5 hours. Saturated $\mathrm{NH}_{4} \mathrm{Cl}(10 \mathrm{ml})$ was added and the solution was extracted with ether $(3 \times 100 \mathrm{ml})$. The combined organic layers were dried $\left(\mathrm{MgSO}_{4}\right)$ and evaporated under reduced pressure. The residue was purified by flash column chromatography on silica gel eluting with light petroleum ($40-60^{\circ} \mathrm{C}$)-ether ($9: 1$) to give the benzoate 31 (1.02 g , 81%) as an oil; $R_{\mathrm{f}}\left[\right.$ light petroleum ($40-60^{\circ} \mathrm{C}$)-ether ($1: 1$)] 0.51 ; $v_{\text {max }}\left(\right.$ film, $\left.\mathrm{CDCl}_{3}\right) / \mathrm{cm}^{-1} 1740\left(\mathrm{CO}_{2} \mathrm{Ph}\right) ; \delta_{\mathrm{H}}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$ 7.95-7.19 ($10 \mathrm{H}, \mathrm{m}, \mathrm{Ph}-\mathrm{C}=\mathrm{O}$ and SPh$)$, $4.55-4.45(2 \mathrm{H}, \mathrm{m}$, $\mathrm{CH}_{2} \mathrm{O}$), $3.53-3.45(1 \mathrm{H}, \mathrm{dd}, J 10.5$ and $1.1, \mathrm{CHOH}), 3.30-3.00$ $(1 \mathrm{H}, \mathrm{s}, \mathrm{OH}), 2.25-1.95\left(1 \mathrm{H}, \mathrm{ddt}, J\right.$ 15.0, 9.0 and $1.1, \mathrm{C}_{\mathrm{C}} \mathrm{H}_{\mathrm{D}}{ }^{-}$ $\left.\mathrm{CH}_{2} \mathrm{O}\right)$ and 2.03-1.07 ($11 \mathrm{H}, \mathrm{m}, \mathrm{CH}_{\mathrm{C}} \mathrm{H}_{\mathrm{D}} \mathrm{CH}_{2}$ and $5 \times \mathrm{CH}_{2}$); $\delta_{\mathrm{C}}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) 166.6^{*}(\mathrm{C}=\mathrm{O}), 137.3$ ($\mathrm{m}-\mathrm{SPh}$), 132.9 (m - $\mathrm{Ph}-\mathrm{C}=\mathrm{O}$), $130.4^{*}(i-\mathrm{SPh}), 130.2^{*}(i-\mathrm{Ph}-\mathrm{C}=\mathrm{O})$, 129.6 (o - $\mathrm{Ph}-$ $\mathrm{C}=\mathrm{O}$), 129.0 ($p-\mathrm{Ph}-\mathrm{C}=\mathrm{O}$), 128.6 ($p-\mathrm{SPh}$), 128.3 ($o-\mathrm{SPh}$), 71.5 (CHOH), 63.0* $\left(\mathrm{CH}_{2} \mathrm{O}\right), 60.6^{*}(\mathrm{CSPh}), 30.3^{*}, 30.0^{*}, 29.8^{*}$, 26.2*, 21.8* and 21.8* $\left(6 \times \mathrm{CH}_{2}\right)$ (Found M^{+}, 370.1594. $\mathrm{C}_{22} \mathrm{H}_{26} \mathrm{O}_{3} \mathrm{~S}$ requires M, 370.1602); m/z 370.2 (75%, M), 352.2 ($25, \mathrm{M}-\mathrm{H}_{2} \mathrm{O}$), 261.2 ($40, \mathrm{M}-\mathrm{SPh}$), 243.1 ($75, \mathrm{M}-\mathrm{SPh}-$ $\mathrm{H}_{2} \mathrm{O}$), 191.1 ($75, \mathrm{C}_{6} \mathrm{H}_{11} \mathrm{SPh}$), 139.1 ($80, \mathrm{M}-\mathrm{SPh}-\mathrm{OH}-\mathrm{Ph}-$ $\mathrm{C}=\mathrm{O}), 121.1\left(80, \mathrm{PhCO}_{2}\right), 105.0(100, \mathrm{Ph}-\mathrm{C}=\mathrm{O})$ and $77.0(75$, $\mathrm{Ph})$.

3-Cyclohexenyl-3-(phenylsulfanyl)propyl benzoate 32

In the same way as THP 11, the benzoate $\mathbf{3 1}(0.4 \mathrm{~g}, 1 \mathrm{mmol})$ and toluene- p-sulfonic acid ($41 \mathrm{mg}, 0.2 \mathrm{mmol}$) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(2 \mathrm{ml})$ gave, after flash column chromatography on silica gel eluting with light petroleum $\left(40-60^{\circ} \mathrm{C}\right)$-ether ($1: 1$), the allylic sulfide $32(0.37 \mathrm{~g}, 97 \%)$ as an oil; R_{f} [light petroleum ($40-60^{\circ} \mathrm{C}$)-ether (1:1)] 0.5; $v_{\text {max }}$ (film, $\left.\mathrm{CDCl}_{3}\right) / \mathrm{cm}^{-1} 1750\left(\mathrm{CO}_{2}\right) ; \delta_{\mathrm{H}}(200 \mathrm{MHz}$, $\left.\mathrm{CDCl}_{3}\right)$ 8.15-7.95 ($2 \mathrm{H}, \mathrm{m}, o$ - to $\mathrm{C}=\mathrm{O}, \mathrm{PhCO}_{2}$), $7.59-7.17(8 \mathrm{H}$, $\mathrm{m}, \mathrm{SPh}, p$ - and m - to $\left.\mathrm{C}=\mathrm{O}, \mathrm{PhCO}_{2}\right) 5.45(1 \mathrm{H}, \mathrm{br} \mathrm{s}, \mathrm{CH}=\mathrm{C})$, 4.99-4.27 ($2 \mathrm{H}, \mathrm{m}, \mathrm{CH}_{2} \mathrm{O}$), 3.76-3.69 ($\left.1 \mathrm{H}, \mathrm{t}, J 3.7, \mathrm{CHSPh}\right)$ and 2.31-1.42 ($10 \mathrm{H}, \mathrm{m}, 5 \mathrm{CH}_{2}$); $\delta_{\mathrm{C}}\left(62.5 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) 166.4^{*}$ (C=O), 134.9* $\left(i-\mathrm{PhCO}_{2}\right), 133.2,132.9,130.2,129.5,128.5$, 128.3, 127.2 and $126.0\left(\mathrm{Ar}, \mathrm{SPh}\right.$ and $\left.\mathrm{PhCO}_{2}\right), 130.0^{*}(i-\mathrm{SPh})$, 125.0* $(\mathrm{CH}=\mathrm{C}), 109.0(\mathrm{CH}=\mathrm{C}), 62.9^{*}\left(\mathrm{CH}_{2} \mathrm{O}\right), 53.7(\mathrm{CHSPh})$, 31.6* $\left(\mathrm{CH}_{2} \mathrm{CH}=\mathrm{C}\right), 25.1^{*}, 24.2^{*}, 22.6^{*}$ and $22.5^{*}\left(4 \times \mathrm{CH}_{2}\right)$ (Found $\mathrm{M}^{+}, 352.1473 . \mathrm{C}_{22} \mathrm{H}_{24} \mathrm{O}_{2} \mathrm{~S}$ requires M, 352.1496); m/z $352.1(20 \%, \mathrm{M}), 243.1$ ($80, \mathrm{M}-\mathrm{SPh}$), 191.1 ($15, \mathrm{C}_{6} \mathrm{H}_{10} \mathrm{SPh}$), $121.1\left(100, \mathrm{PhCO}_{2}\right), 105.0(55, \mathrm{PhCO})$ and $109(25, \mathrm{SPh})$.

3-Cyclohexenyl-3-(phenylsulfanyl)propanol 33

$\mathrm{NaOH}(1 \mathrm{ml}, 10 \%)$ was added to a stirred solution of benzoate $32(1 \mathrm{~g}, 2.83 \mathrm{mmol})$ in $\mathrm{MeOH}-\mathrm{H}_{2} \mathrm{O}(10 \mathrm{ml}, 1: 1)$. The solution was stirred for 1 hour. $\mathrm{HCl}(2 \mathrm{ml}, 3 \mathrm{M})$ was added (until $\mathrm{pH}=7) . \mathrm{H}_{2} \mathrm{O}(10 \mathrm{ml})$ was added and the solution was extracted with ether $(3 \times 50 \mathrm{ml})$. The combined organic layers were dried $\left(\mathrm{MgSO}_{4}\right)$ and evaporated under reduced pressure. The residue was purified by flash column chromatography on silica gel eluting with light petroleum ($40-60^{\circ} \mathrm{C}$)-ether ($1: 1$) to give the allylic sulfide $33(0.6 \mathrm{~g}, 85 \%)$ as an oil; R_{f} [light petroleum ($40-60{ }^{\circ} \mathrm{C}$)-ether $\left.(1: 1)\right] 0.6 ; v_{\text {max }}\left(\right.$ film, $\left.\mathrm{CDCl}_{3}\right) / \mathrm{cm}^{-1} 3200(\mathrm{OH})$; $\delta_{\mathrm{H}}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) 7.36-7.18(5 \mathrm{H}, \mathrm{m}, \mathrm{SPh}), 5.30(1 \mathrm{H}, \mathrm{s}$, $\mathrm{CH}=\mathrm{C}), 3.76-3.63\left(3 \mathrm{H}, \mathrm{m}, \mathrm{CH}_{2} \mathrm{O}\right.$ and CHSPh$)$ and 2.21-1.12
$\left(10 \mathrm{H}, \mathrm{m}, 5 \times \mathrm{CH}_{2}\right) ; \delta_{\mathrm{C}}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) 135.8^{*}(i-\mathrm{SPh})$, 135.0* ($C=\mathrm{CH}$), 133.2 (m-SPh), 128.5 ($p-\mathrm{SPh}$), 127.1 ($o-\mathrm{SPh}$), $125.5(\mathrm{CH}=\mathrm{C}), \quad 61.0^{*}\left(\mathrm{CH}_{2} \mathrm{OH}\right), \quad 54.0(\mathrm{CHSPh}), 35.3^{*}$ $\left(\mathrm{CH}_{2} \mathrm{CH}=\mathrm{C}\right), 25.2^{*}, 24.1^{*}, 22.7^{*}$ and $22.4^{*}\left(4 \times \mathrm{CH}_{2}\right)$ (Found M^{+}, 248.1231. $\mathrm{C}_{15} \mathrm{H}_{20} \mathrm{OS}$ requires $\mathrm{M}, 248.1234$); m/z 248.1 ($60 \%, \mathrm{M}$), 139.1 ($75, \mathrm{M}-\mathrm{SPh}$), 121.1 (100, CHSPh), 109.0 (55 , $\mathrm{SPh})$ and $58\left(20, \mathrm{C}_{3} \mathrm{H}_{6} \mathrm{O}\right)$.

5-Bromopentanol 34, $n=5, \mathrm{X}=\mathrm{Br}$

In the same way as alcohol 33 , the 5 -bromopentyl acetate (12 g , $9.56 \mathrm{ml}, 57.4 \mathrm{mmol}$) and $\mathrm{NaOH}(20 \mathrm{ml}, 10 \%)$ in $\mathrm{EtOH}-\mathrm{H}_{2} \mathrm{O}$ ($100 \mathrm{ml}, 1: 1$) gave, after flash column chromatography on silica gel eluting with ether, the bromo alcohol 34, $n=5, \mathrm{X}=\mathrm{Br}(8.48$ $\mathrm{g}, 89 \%$) as a liquid; R_{f} [ether] 0.45 ; $v_{\text {max }}\left(\right.$ film, $\left.\mathrm{CDCl}_{3}\right) / \mathrm{cm}^{-1}$ $3400-3200(\mathrm{OH}) ; \delta_{\mathrm{H}}\left(250 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) 3.63(2 \mathrm{H}, \mathrm{t}, J 6.3$, $\left.\mathrm{CH}_{2} \mathrm{O}\right), 3.39\left(2 \mathrm{H}, \mathrm{t}, J 6.7, \mathrm{CH}_{2} \mathrm{Br}\right)$ and $2.03-1.42(7 \mathrm{H}, \mathrm{m}$, $3 \times \mathrm{CH}_{2}$ and OH$) ; \delta_{\mathrm{C}}\left(62.5 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) 62.53^{*}\left(\mathrm{CH}_{2} \mathrm{O}\right)$, 33.73* $\left(\mathrm{CH}_{2} \mathrm{Br}\right)$, 32.48*, 31.73* and $24.42^{*}\left(3 \times \mathrm{CH}_{2}\right)$.

3-Bromo-1-(1'-ethoxyethoxy)propane $\mathbf{3 5}, \boldsymbol{n}=\mathbf{3 , X}=\mathbf{B r}$

The bromo alcohol 34, $n=3(7.8 \mathrm{~g}, 5.07 \mathrm{ml}, 56.1 \mathrm{mmol})$ was added to ethyl vinyl ether $(20 \mathrm{ml})$ at $0^{\circ} \mathrm{C}$. Dichloroacetic acid $(0.72 \mathrm{~g}, 0.46 \mathrm{ml}, 5.61 \mathrm{mmol})$ was added and the solution was stirred for 12 hours. $\mathrm{Na}_{2} \mathrm{CO}_{3}(1 \mathrm{~g}$, solid) was added. The solution was filtered through a cotton wool plug. The solvent was removed under reduced pressure. The residue was purified by flash column chromatography on silica gel eluting with light petroleum ($40-60^{\circ} \mathrm{C}$)-ether ($9: 1$) to give the acetal $35, n=3$ $(10.9 \mathrm{~g}, 92 \%)$ as a liquid; R_{f} [light petroleum ($40-60^{\circ} \mathrm{C}$)-ether (9:1)] 0.45; $v_{\max }\left(\right.$ film, $\left.\mathrm{CDCl}_{3}\right) / \mathrm{cm}^{-1} 3100(\mathrm{CH}) ; \delta_{\mathrm{H}}(250 \mathrm{MHz}$, $\left.\mathrm{CDCl}_{3}\right) 4.70(1 \mathrm{H}, \mathrm{m}, \mathrm{OCHO}), 3.78-3.42\left(6 \mathrm{H}, \mathrm{m}, \mathrm{CH}_{2} \mathrm{Br}\right.$ and $\left.2 \times \mathrm{CH}_{2} \mathrm{O}\right), 2.12-2.00\left(2 \mathrm{H}, \mathrm{m}, \mathrm{CH}_{2}\right), 1.29(3 \mathrm{H}, \mathrm{d}, J 5.3$, $\left.\mathrm{CH}_{3} \mathrm{CH}\right), 1.15\left(3 \mathrm{H}, \mathrm{t}, J 7.3, \mathrm{CH}_{3}\right)$ and $1.13\left(3 \mathrm{H}, \mathrm{t}, J 7.0, \mathrm{CH}_{3}\right)$; $\delta_{\mathrm{C}}\left(62.5 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) 99.9(\mathrm{OCHO}), 62.6^{*}\left(\mathrm{CH}_{2} \mathrm{O}\right), 60.5^{*}$ $\left(\mathrm{CH}_{2} \mathrm{O}\right), 32.8^{*}\left(\mathrm{CH}_{2} \mathrm{Br}\right), 30.6^{*}\left(\mathrm{CH}_{2}\right), 19.7$ and $15.2\left(2 \times \mathrm{CH}_{3}\right)$ (Found M^{+}, 210.0260. $\mathrm{C}_{7} \mathrm{H}_{15} \mathrm{O}_{2} \mathrm{Br}$ requires $\mathrm{M}, 210.0255$); m / z $210.0(100 \%$, M).

4-Chloro-1-(1'-ethoxyethoxy)butane 35, $n=4, \mathrm{X}=\mathrm{Cl}$

In the same way as acetal $\mathbf{3 5}, n=3$, the chloro alcohol $\mathbf{3 4}, n=4$ $(7.8 \mathrm{~g}, 7.16 \mathrm{ml}, 71.8 \mathrm{mmol})$ and dichloroacetic acid $(0.92 \mathrm{~g}, 0.63$ $\mathrm{ml}, 7.18 \mathrm{mmol}$) in ethyl vinyl ether (20 ml) gave, after flash column chromatography on silica gel eluting with light petroleum ($40-60^{\circ} \mathrm{C}$)-ether ($9: 1$), the acetal $35, n=4(11.7 \mathrm{~g}, 90 \%)$ as a liquid; $R_{\mathrm{f}}\left[\right.$ light petroleum ($40-60^{\circ} \mathrm{C}$)-ether ($9: 1$)] 0.35 ; $v_{\text {max }}$ (film, $\left.\mathrm{CDCl}_{3}\right) / \mathrm{cm}^{-1} 3100(\mathrm{CH}) ; \delta_{\mathrm{H}}\left(250 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) 4.69(1 \mathrm{H}$, $\mathrm{m}, \mathrm{OCHO}), 3.64-3.37\left(6 \mathrm{H}, \mathrm{m}, \mathrm{CH}_{2} \mathrm{Cl}\right.$ and $2 \times \mathrm{CH}_{2}$), $1.87-1.66$ $\left(4 \mathrm{H}, \mathrm{m}, 2 \times \mathrm{CH}_{2}\right), 1.28\left(3 \mathrm{H}, \mathrm{d}, J 5.4, \mathrm{CH}_{3} \mathrm{CH}\right)$ and $1.18(3 \mathrm{H}, \mathrm{t}$, $\left.J 7.0, \mathrm{CH}_{3} \mathrm{CH}_{2}\right) ; \delta_{\mathrm{C}}\left(62.5 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) 99.6(\mathrm{OCHO}), 62.5^{*}$ $\left(\mathrm{CH}_{2} \mathrm{O}\right), 60.8^{*}\left(\mathrm{CH}_{2} \mathrm{O}\right), 32.8^{*}\left(\mathrm{CH}_{2} \mathrm{Cl}\right), 30.5^{*}$ and $30.5^{*}(2 \times$ CH_{2}), 19.8 and $15.4\left(2 \times \mathrm{CH}_{3}\right)$ (Found ($\left.\mathrm{M}-\mathrm{CH}_{3}\right)^{+}, 165.0679$. $\mathrm{C}_{7} \mathrm{H}_{14} \mathrm{O}_{2} \mathrm{Cl}$ requires M, 165.0682); $m / z 165.1\left(20 \%\right.$, M $-\mathrm{CH}_{3}$), 91.1 (90, M - 1-ethoxyethoxy (OEE)) and 73 (100, M $\left.\mathrm{C}_{4} \mathrm{H}_{8} \mathrm{Cl}\right)$.

5-Bromo-1-(1'-ethoxyethoxy)pentane $\mathbf{3 5}, \boldsymbol{n}=\mathbf{5 ,} \mathbf{X}=\mathrm{Br}$

In the same way as acetal $\mathbf{3 5}, n=3$, the bromo alcohol $\mathbf{3 4}, n=5$; $\mathrm{X}=\mathrm{Br}(10 \mathrm{~g}, 60.2 \mathrm{mmol})$ and dichloroacetic acid $(0.77 \mathrm{~g}, 0.49$ $\mathrm{ml}, 6.02 \mathrm{mmol}$) in ethyl vinyl ether (20 ml) gave, after flash column chromatography on silica gel eluting with light petroleum $\left(40-60^{\circ} \mathrm{C}\right)$-ether $(9: 1)$, the acetal $35, n=5, \mathrm{X}=\operatorname{Br}(13.47 \mathrm{~g}$, 94%) as an oil; $R_{\mathrm{f}}\left[\right.$ light petroleum ($40-60^{\circ} \mathrm{C}$)-ether ($9: 1$)] 0.4; $\delta_{\mathrm{H}}\left(250 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) 4.65(1 \mathrm{H}, \mathrm{q}, J 5.3, \mathrm{OCHO}), 3.70-3.35$ $\left(4 \mathrm{H}, \mathrm{m}, 2 \times \mathrm{CH}_{2} \mathrm{O}\right), 3.26\left(2 \mathrm{H}, \mathrm{t}, J 6.7, \mathrm{CH}_{2} \mathrm{Br}\right), 1.87(2 \mathrm{H}, \mathrm{m}$, CH_{2}), $1.65-1.43\left(4 \mathrm{H}, \mathrm{m}, 2 \times \mathrm{CH}_{2}\right), 1.29\left(3 \mathrm{H}, \mathrm{d}, J 5.4, \mathrm{CH}_{3} \mathrm{CH}\right)$ and $1.19\left(3 \mathrm{H}, \mathrm{t}, J 7.1, \mathrm{CH}_{3} \mathrm{CH}_{2}\right) ; \delta_{\mathrm{C}}\left(62.5 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) 99.6$ (OCHO), 65.8* and 60.7* $\left(2 \times \mathrm{CH}_{2} \mathrm{O}\right), 33.8^{*}\left(\mathrm{CH}_{2} \mathrm{Br}\right), 32.6^{*}$, 29.0* and $25.0^{*}\left(3 \times \mathrm{CH}_{2}\right), 19.8$ and $15.3\left(2 \times \mathrm{CH}_{3}\right)$.

6-Bromo-1-(1'-ethoxyethoxy)hexane 35, $n=6, \mathrm{X}=\mathrm{Br}$

In the same way as acetal $35, n=3$, the bromo alcohol $34, n=6$; $\mathrm{X}=\operatorname{Br}(2.1 \mathrm{~g}, 11.6 \mathrm{mmol})$ and dichloroacetic acid $(0.24 \mathrm{~g}, 0.16$ $\mathrm{ml}, 1.93 \mathrm{mmol}$) in ethyl vinyl ether (10 ml) gave, after flash column chromatography on silica gel eluting with light petroleum ($40-60^{\circ} \mathrm{C}$)-ether $(9: 1)$, the acetal $35, n=6, \mathrm{X}=\operatorname{Br}(2.7 \mathrm{~g}$, 95%) as an oil; $R_{\mathrm{f}}\left[\right.$ light petroleum ($40-60^{\circ} \mathrm{C}$)-ether ($9: 1$)] 0.36; $\delta_{\mathrm{H}}\left(250 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) 4.65(1 \mathrm{H}, \mathrm{q}, J 5.4, \mathrm{OCHO}), 3.68-3.34$ $\left(4 \mathrm{H}, \mathrm{m}, 2 \times \mathrm{CH}_{2} \mathrm{O}\right), 3.39\left(2 \mathrm{H}, \mathrm{t}, J 6.8, \mathrm{CH}_{2} \mathrm{Br}\right), 1.85(2 \mathrm{H}, \mathrm{q}$, $\left.J 6.6, \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{Br}\right), 1.56\left(2 \mathrm{H}, \mathrm{q}, J 6.6, \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{O}\right), 1.52-1.30$ $\left(4 \mathrm{H}, \mathrm{m}, 2 \times \mathrm{CH}_{2}\right), 1.28\left(3 \mathrm{H}, \mathrm{d}, J 5.3, \mathrm{CH}_{3} \mathrm{CH}\right)$ and $1.18(3 \mathrm{H}$, $\left.\mathrm{t}, J 7.1, \mathrm{CH}_{3} \mathrm{CH}_{2}\right) ; \delta_{\mathrm{C}}\left(62.5 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) 99.5$ (OCHO), 65.9 and $65.7\left(2 \times \mathrm{CH}_{2} \mathrm{O}\right)$, $33.8\left(\mathrm{CH}_{2} \mathrm{Br}\right), 32.7,29.0,27.9$ and $25.0\left(4 \times \mathrm{CH}_{2}\right)$, 19.8 and $15.2\left(2 \times \mathrm{CH}_{3}\right)$ (Found $\left(\mathrm{M}-\mathrm{CH}_{3}\right)^{+}$, 237.0488. $\mathrm{C}_{9} \mathrm{H}_{18} \mathrm{O}_{2} \mathrm{Br}$ requires $\mathrm{M}-\mathrm{CH}_{3}$, 237.0491); m/z 237.0 ($85 \%, \mathrm{M}-\mathrm{CH}_{3}$), 163.1 ($75, \mathrm{M}-\mathrm{OCH}(\mathrm{Me}) \mathrm{OEt}$), and 73.1 ($\left.100, \mathrm{M}-\left(\mathrm{CH}_{2}\right)_{6} \mathrm{Br}\right)$.

8-Bromo-1-(1'-ethoxyethoxy)octane 35, $n=8, \mathrm{X}=\mathrm{Br}$

In the same way as acetal $\mathbf{3 5}, n=3$, the bromo alcohol $\mathbf{3 5}, n=8$, $\mathrm{X}=\mathrm{Br}(2.0 \mathrm{~g}, 9.6 \mathrm{mmol})$ and dichloroacetic acid $(0.2 \mathrm{~g}, 0.13 \mathrm{ml}$, $1.6 \mathrm{mmol})$ in ethyl vinyl ether (10 ml) gave, after flash column chromatography on silica gel eluting with light petroleum (40$60^{\circ} \mathrm{C}$)-ether (9:1), the acetal 35, $n=8, \mathrm{X}=\operatorname{Br}(2.43 \mathrm{~g}, 91 \%)$ as an oil; $R_{\mathrm{f}}\left[\right.$ light petroleum ($40-60^{\circ} \mathrm{C}$)-ether ($\left.\left.9: 1\right)\right] 0.38 ; \delta_{\mathrm{H}}(250$ $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right) 4.66(1 \mathrm{H}, \mathrm{q}, J 5.3, \mathrm{OCHO}), 3.68-3.30(4 \mathrm{H}, \mathrm{m}$, $\left.2 \times \mathrm{CH}_{2} \mathrm{O}\right), 3.39\left(2 \mathrm{H}, \mathrm{t}, J 6.8, \mathrm{CH}_{2} \mathrm{Br}\right), 1.84\left(2 \mathrm{H}, \mathrm{q}, J 6.7, \mathrm{CH}_{2}-\right.$ $\left.\mathrm{CH}_{2} \mathrm{Br}\right), 1.55\left(2 \mathrm{H}, \mathrm{q}, J 6.7, \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{O}\right), 1.52-1.28(4 \mathrm{H}, \mathrm{m}$, $\left.2 \times \mathrm{CH}_{2}\right), 1.29\left(3 \mathrm{H}, \mathrm{d}, J 5.4, \mathrm{CH}_{3} \mathrm{CH}\right)$ and $1.18(3 \mathrm{H}, \mathrm{t}, J 7.1$, $\mathrm{CH}_{3} \mathrm{CH}_{2}$); $\delta_{\mathrm{C}}\left(62.5 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) 99.7$ (OCHO), 65.4 and $60.8\left(2 \times \mathrm{CH}_{2} \mathrm{O}\right), 34.1\left(\mathrm{CH}_{2} \mathrm{Br}\right), 32.9,30.0,29.4,28.8,28.2$ and $26.3\left(6 \times \mathrm{CH}_{2}\right), 20.0$ and $15.5\left(2 \times \mathrm{CH}_{3}\right)\left(\right.$ Found $\left(\mathrm{M}-\mathrm{CH}_{3}\right)^{+}$, 265.0806. $\mathrm{C}_{11} \mathrm{H}_{20} \mathrm{O}_{2} \mathrm{Br}$ requires $\mathrm{M}-\mathrm{CH}_{3}, 265.0806$); m/z 291.2 ($13 \%, \mathrm{M}+$), $237.0\left(14, \mathrm{M}-\mathrm{CH}_{3}\right), 191.1$ ($75, \mathrm{M}-\mathrm{OCH}(\mathrm{Me})-$ OEt) and $73.1\left(100, \mathrm{M}-\left(\mathrm{CH}_{2}\right)_{8} \mathrm{Br}\right)$.

11-Bromo-1-(1'-ethoxyethoxy)undecane 35, $n=11, \mathrm{X}=\mathrm{Br}$

In the same way as acetal 35, $n=3$, the bromo alcohol 35, $n=11, \mathrm{X}=\mathrm{Br}(9 \mathrm{~g}, 36 \mathrm{mmol})$ and dichloroacetic acid $(0.77 \mathrm{~g}$, $0.49 \mathrm{ml}, 6.02 \mathrm{mmol}$) in ethyl vinyl ether (20 ml) gave, after flash column chromatography on silica gel eluting with light petroleum ($40-60^{\circ} \mathrm{C}$)-ether ($9: 1$), the acetal $35, n=11, \mathrm{X}=\operatorname{Br}(10 \mathrm{~g}$, 86%) as an oil; R_{f} [light petroleum (40-60 ${ }^{\circ} \mathrm{C}$)-ether ($9: 1$)] 0.31; $\delta_{\mathrm{H}}\left(250 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) 4.66(1 \mathrm{H}, \mathrm{q}, J 5.3, \mathrm{OCHO}), 3.70-3.38$ $\left(4 \mathrm{H}, \mathrm{m}, 2 \times \mathrm{CH}_{2} \mathrm{O}\right), 3.34\left(2 \mathrm{H}, \mathrm{t}, J 6.8, \mathrm{CH}_{2} \mathrm{Br}\right), 1.83(2 \mathrm{H}, \mathrm{q}$, $\left.J 6.8, \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{Br}\right), 1.52\left(2 \mathrm{H}, \mathrm{q}, J 6.7, \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{O}\right), 1.43-1.26$ $\left(14 \mathrm{H}, \mathrm{m}, 7 \times \mathrm{CH}_{2}\right), 1.28\left(3 \mathrm{H}, \mathrm{d}, J 5.4, \mathrm{CH}_{3} \mathrm{CH}\right)$ and $1.21(3 \mathrm{H}$, $\left.\mathrm{t}, J 6.9, \mathrm{CH}_{3} \mathrm{CH}_{2}\right) ; \delta_{\mathrm{c}}\left(62.5 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) 99.6(\mathrm{OCHO}), 65.8$ and $65.4\left(2 \times \mathrm{CH}_{2} \mathrm{O}\right), 34.7\left(\mathrm{CH}_{2} \mathrm{Br}\right), 32.9,30.0,29.7,29.6,29.5$, 28.9, 28.3 and $26.4\left(8 \times \mathrm{CH}_{2}\right), 20.0$ and $15.5\left(2 \times \mathrm{CH}_{3}\right)$ (Found M^{+}, 322.1500. $\mathrm{C}_{15} \mathrm{H}_{31} \mathrm{O}_{2} \mathrm{Br}$ requires $\mathrm{M}, 322.1508$); m/z 322.1 ($11 \%, \mathrm{M}+$), $307.1\left(50, \mathrm{M}-\mathrm{CH}_{3}\right), 233.1$ ($46, \mathrm{M}-\mathrm{OCH}(\mathrm{Me})-$ $\mathrm{OEt})$, and $73.1\left(100, \mathrm{M}-\left(\mathrm{CH}_{2}\right)_{11} \mathrm{Br}\right)$.

4-(1"-Ethoxyethoxy)-1-[1'-(phenylsulfanyl)cyclohexyl]butanol 37, $n=3$

Lithium (70 mg , lithium $+1 \%$ sodium wire, 10 mmol) was added to a stirred solution of acetal $35, n=3(0.63 \mathrm{~g}, 3 \mathrm{mmol})$ in ether $(2 \mathrm{ml})$ at $-20^{\circ} \mathrm{C}$. The solution was stirred for 3 hours. A solution of aldehyde $15(0.22 \mathrm{~g}, 1 \mathrm{mmol})$ in ether (1 ml) was added. The solution was stirred for 1 hour. Saturated $\mathrm{NH}_{4} \mathrm{Cl}$ $(10 \mathrm{ml})$ was added and the solution was extracted with ether $(3 \times 50 \mathrm{ml})$. The combined organic layers were dried $\left(\mathrm{MgSO}_{4}\right)$ and evaporated under reduced pressure. The residue was purified by flash column chromatography on silica gel eluting with light petroleum ($40-60^{\circ} \mathrm{C}$)-ether ($1: 1$) to give the acetal 37; $n=3\left(0.34 \mathrm{~g}, 99^{\circ}\right)$ as an oil; R_{f} (light petroleum ($40-60^{\circ} \mathrm{C}$)ether (1:1)] 0.50; $v_{\text {max }}$ (film, $\left.\mathrm{CDCl}_{3}\right) / \mathrm{cm}^{-1} 3200(\mathrm{OH}) ; \delta_{\mathrm{H}}(250$
$\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right) 7.56-7.21\left(10 \mathrm{H}, \mathrm{m}, \mathrm{SPh}^{\mathrm{A}}\right.$ and $\left.\mathrm{SPh}^{\mathrm{B}}\right), 4.64-4.56(2$ $\mathrm{H}, \mathrm{m}, 2 \times \mathrm{CHO}), 3.62-3.48\left(4 \mathrm{H}, \mathrm{m}, 2 \times \mathrm{OCH}_{2} \mathrm{CH}_{2}\right), 3.48-3.31$ $\left(4 \mathrm{H}, \mathrm{m}, 2 \times \mathrm{OCH}_{2} \mathrm{CH}_{3}\right), 3.28-3.22(2 \mathrm{H}, \mathrm{br} \mathrm{s}, 2 \times \mathrm{OH}), 2.03-$ $1.30\left(24 \mathrm{H}, \mathrm{m}, 12 \times \mathrm{CH}_{2}\right), 1.25-1.23\left(3 \mathrm{H}, \mathrm{d}, J 1.9, \mathrm{CHCH}_{3}{ }^{\mathrm{A}}\right)$, $1.23-1.20\left(3 \mathrm{H}, \mathrm{d}, J 1.9, \mathrm{CHCH}_{3}{ }^{\mathrm{B}}\right)$ and $1.20-1.10(1 \mathrm{H}, \mathrm{t}$, $J 7.0, \mathrm{CH}_{2} \mathrm{CH}_{3}{ }^{\mathrm{A}}$ and $\left.\mathrm{CH}_{2} \mathrm{CH}_{3}{ }^{\mathrm{B}}\right) ; \delta_{\mathrm{C}}\left(62.5 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) 137.4$ (m -SPh), 130.5* ($i-\mathrm{SPh}$), 129.0 ($p-\mathrm{SPh}$), 128.6 ($o-\mathrm{SPh}$), 89.5 (OCHO), $74.9(\mathrm{HCO}), 65.0^{*}\left(\mathrm{CH}_{2} \mathrm{O}\right), 60.7^{*}\left(\mathrm{CH}_{2} \mathrm{O}\right), 55.4^{*}$ (CSPh), 29.8*, 27.4*, 27.4*, 26.1* and 23.0* $\left(5 \times \mathrm{CH}_{2}\right)$, 25.7, 22.2, 19.8 and $15.2\left(2 \times \mathrm{Me}^{\mathrm{A}}\right.$ and $2 \times \mathrm{Me}^{\mathrm{B}}$) (Found M^{+}, 352.2070. $\mathrm{C}_{20} \mathrm{H}_{32} \mathrm{O}_{3} \mathrm{~S}$ requires M, 352.2072); m/z $352.2(20 \%$, M), $335.0\left(5, \mathrm{M}-\mathrm{H}_{2} \mathrm{O}+\mathrm{H}\right.$), $306.2\left(80, \mathrm{M}-\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{OH}\right)$, 278.2 (10, $\mathrm{M}-\mathrm{CH}_{3} \mathrm{CHO}-\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{OH}$), 191.1 (100 , $\left.\mathrm{C}_{6} \mathrm{H}_{10} \mathrm{SPh}\right)$ and $110(30, \mathrm{PhSH})$.

5-(1"-Ethoxyethoxy)-1-[(1'-phenylsulfanyl)cyclohexyl]pentanol 37, $n=4$

In the same way as alcohol 37, $n=3$, the chloro acetal $\mathbf{3 5}, n=4$ ($7.38 \mathrm{~g}, 40.8 \mathrm{mmol}$), lithium (0.68 g , lithium $+1 \%$ sodium wire, $136 \mathrm{mmol})$ and aldehyde $15(3 \mathrm{~g}, 13.6 \mathrm{mmol})$ in ether $(15 \mathrm{ml})$ gave, after flash column chromatography on silica gel eluting with light petroleum ($40-60^{\circ} \mathrm{C}$)-ether ($1: 1$), the acetal 37 , $n=4$ $(4.26 \mathrm{~g}, 85 \%)$ as an oil, R_{f} [light petroleum $\left(40-60^{\circ} \mathrm{C}\right)$-ether (1:1)] 0. $v_{\text {max }}\left(\right.$ film, $\left.\mathrm{CDCl}_{3}\right) / \mathrm{cm}^{-1} 3400-3200(\mathrm{OH}) ; \delta_{\mathrm{H}}(400 \mathrm{MHz}$, $\left.\mathrm{CDCl}_{3}\right) 7.57-7.27(5 \mathrm{H}, \mathrm{m}, \mathrm{SPh}), 4.66(1 \mathrm{H}, \mathrm{q}, J 5.34, \mathrm{OCHO})$, $3.64(1 \mathrm{H}, \mathrm{t}, J 6.3, \mathrm{CHOH}), 3.58-3.51\left(2 \mathrm{H}, \mathrm{m}, \mathrm{CH}_{2} \mathrm{O}\right), 3.35$ $\left(1 \mathrm{H}, \mathrm{m}, \mathrm{C} H_{\mathrm{A}} \mathrm{H}_{\mathrm{B}} \mathrm{O}\right), 3.23\left(1 \mathrm{H}, \mathrm{m}, \mathrm{CH}_{\mathrm{A}} H_{\mathrm{B}} \mathrm{O}\right), 3.04(1 \mathrm{H}, \mathrm{s}, \mathrm{OH})$, and 1.97-1.19 ($16 \mathrm{H}, \mathrm{m}, 8 \times \mathrm{CH}_{2}$); $\delta_{\mathrm{C}}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) 137.2$ (m-SPh), 130.2* ($i-\mathrm{SPh}$), 128.9 ($p-\mathrm{SPh}$), 128.8 (o-SPh), 99.7 (OCHO), $74.9(\mathrm{CHOH}), 65.3^{*}\left(\mathrm{CH}_{2} \mathrm{O}\right), 62.0^{*}(\mathrm{CSPh}), 61.8^{*}$ $\left(\mathrm{CH}_{2} \mathrm{O}\right), 30.5^{*}, 30.1^{*}, 30.2^{*}, 29.9^{*}, 29.6^{*}, 26.2^{*}, 24.1^{*}$ and 21.8* $\left(8 \times \mathrm{CH}_{2}\right)$ and $19.8\left(\mathrm{CH}_{3} \mathrm{CH}\right)$ (Found ($\left.\mathrm{M}-\mathrm{CH}_{2} \mathrm{CH}_{3}\right)^{+}$, 321.1884. $\mathrm{C}_{19} \mathrm{H}_{29} \mathrm{O}_{2} \mathrm{~S}$ requires $\mathrm{M}-\mathrm{CH}_{2} \mathrm{CH}_{3}, 321.1888$); m/z $321.2\left(80 \%, \mathrm{M}-\mathrm{CH}_{2} \mathrm{CH}_{3}\right)$, 191.1 ($100, \mathrm{C}_{6} \mathrm{H}_{10} \mathrm{SPh}$), 109 (10 , $\mathrm{PhSH})$ and $81.0\left(30, \mathrm{C}_{6} \mathrm{H}_{9}\right)$.

6-(1"-Ethoxyethoxy)-1-[(1'-phenylsulfanyl)cyclohexyl]hexanol 37, $n=5$

In the same way as alcohol $37, n=3$, the bromo acetal $\mathbf{3 5}, n=5$, $\mathrm{X}=\mathrm{Br}(7.69 \mathrm{~g}, 34.08 \mathrm{mmol})$, lithium $(0.79 \mathrm{~g}$, lithium $+1 \%$ sodium wire, 113 mmol) and aldehyde $15(2.5 \mathrm{~g}, 11.36 \mathrm{mmol})$ in ether (15 ml) gave, after flash column chromatography on silica gel eluting with light petroleum $\left(40-60^{\circ} \mathrm{C}\right)$-ether $(1: 1)$, an inseparable diastereomeric mixture ($50: 50$) of the acetal 37, $n=5(3.92 \mathrm{~g}, 94 \%)$ as an oil; R_{f} [light petroleum $\left(40-60^{\circ} \mathrm{C}\right)-$ ether (1:1)] 0.45; $v_{\text {max }}$ (film, $\mathrm{CDCl}_{3} / \mathrm{cm}^{-1} 3300(\mathrm{OH}) ; \delta_{\mathrm{H}}(250$ $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right) 7.53-7.27(5 \mathrm{H}, \mathrm{m}, \mathrm{SPh}), 4.65(1 \mathrm{H}, \mathrm{q}, J 5.3$, OCHO), $3.70-3.08\left(4 \mathrm{H}, \mathrm{m}, 2 \times \mathrm{CH}_{2}\right), 3.22(1 \mathrm{H}, \mathrm{dt}, J 9.2$ and $2.3, \mathrm{CHOH}), 3.08(1 \mathrm{H}, \mathrm{d}, J 2.4, \mathrm{OH}), 2.05-1.21(18 \mathrm{H}, \mathrm{m}$, $\left.9 \times \mathrm{CH}_{2}\right), 1.29\left(3 \mathrm{H}, \mathrm{d}, J 5.3, \mathrm{CH} \mathrm{H}_{3} \mathrm{CH}\right)$ and $1.19(3 \mathrm{H}, \mathrm{t}, J 7.0$, $\left.\mathrm{CH}_{3} \mathrm{CH}_{2}\right) ; \delta_{\mathrm{C}}\left(62.5 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) 137.2(\mathrm{~m}-\mathrm{SPh}), 130.1^{*}(i-\mathrm{SPh})$, $128.9(p-\mathrm{SPh}), 128.8(o-\mathrm{SPh}), 99.5(\mathrm{OCHO}), 74.6(\mathrm{CHOH})$, 65.2* and 60.6* $\left(2 \times \mathrm{CH}_{2}\right), 58.0^{*}(\mathrm{CSPh}), 30.6^{*}, 30.5^{*}, 29.8^{*}$, $29.6^{*}, 27.2^{*}, 26.4^{*}, 26.2^{*}, 25.8^{*}$ and $21.8^{*}\left(9 \times \mathrm{CH}_{2}\right), 19.8$ and $15.3\left(2 \times \mathrm{CH}_{3}\right)$ (Found $\left(\mathrm{M}-\mathrm{OCH}_{2} \mathrm{CH}_{3}\right)^{+}, 335.2036 . \mathrm{C}_{20} \mathrm{H}_{31}-$ $\mathrm{O}_{2} \mathrm{~S}$ requires $\left.\mathrm{M}-\mathrm{OCH}_{2} \mathrm{CH}_{3}, 335.2044\right)$; $\mathrm{m} / \mathrm{z} 335.1$ (10%, $\mathrm{M}-$ $\mathrm{OCH}_{2} \mathrm{CH}_{3}$), $308.2(50, \mathrm{M}-\mathrm{EE}+\mathrm{H})$, 291.2 (20, M - OEE), $191.1\left(100, \mathrm{C}_{6} \mathrm{H}_{10} \mathrm{SPh}\right), 109.0(25, \mathrm{PhS}), 81.1\left(85, \mathrm{C}_{6} \mathrm{H}_{9}\right)$ and 73.1 (55, EE)

7-(1"-Ethoxyethoxy)-1-[(1'-phenylsulfanyl)cyclohexyl]heptanol $37, n=6$

In the same way as alcohol $37, n=3$, the chloro acetal $\mathbf{3 5}$, $n=6$ $(0.76 \mathrm{~g}, 3 \mathrm{mmol})$, lithium (70 mg , lithium $+1 \%$ sodium wire, 10 $\mathrm{mmol})$ and aldehyde $15(0.22 \mathrm{~g}, 1 \mathrm{mmol})$ in ether (15 ml) gave, after flash column chromatography on silica gel eluting with light petroleum ($40-60^{\circ} \mathrm{C}$)-ether ($1: 1$), the acetal 37, $n=6$ $(0.37 \mathrm{~g}, 96 \%)$ as an oil; R_{f} [light petroleum ($40-60^{\circ} \mathrm{C}$)-ether
(1:1)] 0.44; $v_{\text {max }}$ (film, $\left.\mathrm{CDCl}_{3}\right) / \mathrm{cm}^{-1} 3400-3200(\mathrm{OH}) ; \delta_{\mathrm{H}}(250$ $\mathrm{MHz}, \mathrm{CDCl}_{3}$) $7.48-7.24(5 \mathrm{H}, \mathrm{m}, \mathrm{SPh}), 4.64(1 \mathrm{H}, \mathrm{q}, J 5.2$, $\mathrm{OCHO}), 3.70-3.35\left(4 \mathrm{H}, \mathrm{m}, 2 \times \mathrm{CH}_{2} \mathrm{O}\right), 3.25(1 \mathrm{H}, \mathrm{s}, \mathrm{OH}), 3.20$ $(1 \mathrm{H}, \mathrm{dt}, J 9.2$ and $2.5, \mathrm{CHOH}), 1.94-1.14\left(20 \mathrm{H}, \mathrm{m}, 13 \times \mathrm{CH}_{2}\right)$, 1.28 ($3 \mathrm{H}, \mathrm{d}, J 5.3, \mathrm{CH}_{3} \mathrm{CH}$) and $1.20\left(3 \mathrm{H}, \mathrm{d}, J 7.1, \mathrm{CH}_{3} \mathrm{CH}\right)$; $\delta_{\mathrm{C}}\left(62.5 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) 137.2(\mathrm{~m}-\mathrm{SPh}), 130.2(i-\mathrm{SPh}), 129.0$ ($p-\mathrm{SPh}), 128.8(o-\mathrm{SPh}), 99.5(\mathrm{OCHO}), 74.7(\mathrm{CHOH}), 65.2$ and $61.9\left(2 \times \mathrm{CH}_{2} \mathrm{O}\right), 60.6(\mathrm{CSPh}), 32.6,30.5,29.8,29.6,29.5,27.4$, 26.3, 26.2, 21.9 and $21.8\left(10 \times \mathrm{CH}_{2}\right), 19.8\left(\mathrm{CH}_{3} \mathrm{CH}\right)$ and 15.3 $\left(\mathrm{CH}_{3} \mathrm{CH}\right)$ (Found M^{+}, 394.2510. $\mathrm{C}_{23} \mathrm{H}_{38} \mathrm{O}_{3} \mathrm{~S}$ requires M , 394.2541); $m / z 349.2$ ($68 \%, \mathrm{M}-\mathrm{OEt}$) and 73.0 ($100, \mathrm{M}-\mathrm{C}_{19}{ }^{-}$ $\mathrm{H}_{29} \mathrm{OS}$).

9-(1"-Ethoxyethoxy)-1-[(1'-phenylsulfanyl)cyclohexyl]nonanol $37, n=8$

In the same way as alcohol $\mathbf{3 7}, n=3$, the chloro acetal $\mathbf{3 5}, n=8$ ($0.84 \mathrm{~g}, 3 \mathrm{mmol}$), lithium (70 mg , lithium $+1 \%$ sodium wire, 10 $\mathrm{mmol})$ and aldehyde $15(0.22 \mathrm{~g}, 1 \mathrm{mmol})$ in ether (15 ml) gave, after flash column chromatography on silica gel eluting with light petroleum $\left(40-60^{\circ} \mathrm{C}\right.$)-ether ($1: 1$), the acetal $37, n=8$ $(0.37 \mathrm{~g}, 87 \%)$ as an oil; R_{f} [light petroleum $\left(40-60^{\circ} \mathrm{C}\right)$-ether (1:1)] 0.44; $v_{\text {max }}$ (film, $\left.\mathrm{CDCl}_{3}\right) / \mathrm{cm}^{-1} 3400-3200(\mathrm{OH}) ; \delta_{\mathrm{H}}(250$ $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right) 7.50-7.25(5 \mathrm{H}, \mathrm{m}, \mathrm{SPh}), 4.65(1 \mathrm{H}, \mathrm{q}, J 5.4$, OCHO), 3.71-3.36 ($4 \mathrm{H}, \mathrm{m}, 2 \times \mathrm{CH}_{2} \mathrm{O}$), $3.22(1 \mathrm{H}, \mathrm{dd}, J 8.7$ and 1.1, CHOH), $1.80-1.16\left(24 \mathrm{H}, \mathrm{m}, 12 \times \mathrm{CH}_{2}\right), 1.27(3 \mathrm{H}, \mathrm{d}$, $\left.J 5.1, \mathrm{CH}_{3} \mathrm{CH}\right)$ and $1.18\left(3 \mathrm{H}, \mathrm{t}, J 7.1, \mathrm{CH}_{3} \mathrm{CH}_{2}\right) ; \delta_{\mathrm{C}}(62.5 \mathrm{MHz}$, $\left.\mathrm{CDCl}_{3}\right) 137.3(m-\mathrm{SPh}), 130.2(i-\mathrm{SPh}), 129.0(p-\mathrm{SPh}), 128.8$ ($o-\mathrm{SPh}), 99.5(\mathrm{OCHO}), 74.7(\mathrm{CHOH}), 65.3$ and $62.0(2 \times$ $\mathrm{CH}_{2} \mathrm{O}$), 60.6 (CSPh), 32.8, 30.6, 30.0, 29.7, 29.6, 29.5, 29.4, 27.4, 26.3, 26.2, 25.7 and $21.9\left(12 \times \mathrm{CH}_{2}\right), 19.9\left(\mathrm{CH}_{3} \mathrm{CH}\right)$ and $15.3\left(\mathrm{CH}_{3} \mathrm{CH}_{2}\right)$ (Found $\mathrm{M}^{+}, 422.0000 . \mathrm{C}_{25} \mathrm{H}_{42} \mathrm{O}_{3} \mathrm{~S}$ requires M, 422.2800); $\mathrm{m} / \mathrm{z} 422.0(4 \%, \mathrm{M}), 377.1$ (75, M - OEt) and 73.0 (92, M - $\mathrm{C}_{21} \mathrm{H}_{33} \mathrm{OS}$).

12-(1"-Ethoxyethoxy)-1-[(1'-phenylsulfanyl)cyclohexyl]-dodecan-1-ol 37, $n=11$

In the same way as alcohol $37, n=3$, the bromo acetal $\mathbf{3 5}, n=11$ $(0.96 \mathrm{~g}, 3 \mathrm{mmol})$, lithium (70 mg , lithium $+1 \%$ sodium wire, 10 $\mathrm{mmol})$ and aldehyde $15(0.22 \mathrm{~g}, 1 \mathrm{mmol})$ in ether (15 ml) gave, after flash column chromatography on silica gel eluting with light petroleum ($40-60^{\circ} \mathrm{C}$)-ether ($9: 1$), the acetal $37, n=12$ $(0.46 \mathrm{~g}, 99 \%)$ as an oil; R_{f} [light petroleum ($40-60^{\circ} \mathrm{C}$)-ether (9:1)] 0.14; $\delta_{\mathrm{H}}\left(250 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) 7.52-7.25(5 \mathrm{H}, \mathrm{m}, \mathrm{SPh}), 4.70$ ($1 \mathrm{H}, \mathrm{q}, J 5.4, \mathrm{OCHO}$), $3.67-3.34\left(4 \mathrm{H}, \mathrm{m}, 2 \times \mathrm{CH}_{2} \mathrm{O}\right), 3.22$ $(1 \mathrm{H}, \mathrm{dt}, J 9.3$ and $2.1, \mathrm{CHOH}), 3.06(1 \mathrm{H}, \mathrm{d}, J 2.1, \mathrm{OH}), 2.00-$ $1.05\left(32 \mathrm{H}, \mathrm{m}, 16 \times \mathrm{CH}_{2}\right), 1.28\left(3 \mathrm{H}, \mathrm{d}, J 5.3, \mathrm{CH}_{3} \mathrm{CH}\right)$ and 1.18 $\left(3 \mathrm{H}, \mathrm{t}, \mathrm{J} 7.1, \mathrm{CH}_{3} \mathrm{CH}_{2}\right)$; $\delta_{\mathrm{C}}\left(62.5 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) 137.4(\mathrm{~m}-\mathrm{SPh})$, $130.0(i-\mathrm{SPh}), 129.1(p-\mathrm{SPh}), 128.9$ (o-SPh), 99.7 (OCHO), 74.8 $(\mathrm{CHOH}), 65.4$ and $60.7\left(2 \times \mathrm{CH}_{2} \mathrm{O}\right), 62.2(\mathrm{CSPh}), 32.8,30.7$, $30.0,29.9,29.8,29.7,27.6,26.4,26.2,22.0,21.9\left(15 \times \mathrm{CH}_{2}\right)$, $20.0\left(\mathrm{CH}_{3} \mathrm{CH}\right)$ and $15.5\left(\mathrm{CH}_{3} \mathrm{CH}_{2}\right)$ (Found $(\mathrm{M}-\mathrm{Me})^{+}$, 447.3317. $\mathrm{C}_{27} \mathrm{H}_{45} \mathrm{O}_{3} \mathrm{~S}$ requires ($\mathrm{M}-\mathrm{Me}$), 447.3296); $m / z 447.3$ ($110 \%, \mathrm{M}-\mathrm{Me}$), 419.1 ($61, \mathrm{M}-\mathrm{OEt}$) and 73.0 ($92, \mathrm{M}-\mathrm{C}_{24}{ }^{-}$ $\left.\mathrm{H}_{39} \mathrm{OS}\right)$.

2-[1'-(Phenylsulfanyl)cyclohexyl]tetrahydropyran 41

In the same way as the toluene- p-sulfonate $\mathbf{1 0}, n=5$, the diol $\mathbf{8}$, $n=4(75 \mathrm{mg}, 0.26 \mathrm{mmol})$ and toluene- p-sulfonyl chloride ($57 \mathrm{mg}, 0.26 \mathrm{mmol}$) in pyridine (1 ml) gave, after flash column chromatography on silica gel eluting with light petroleum (40$60^{\circ} \mathrm{C}$)-ether ($9: 1$), the tetrahydropyran $41(69 \mathrm{mg}, 98 \%)$ as an oil; $R_{\mathrm{f}}\left[\right.$ light petroleum $\left(40-60^{\circ} \mathrm{C}\right.$)-ether $\left.(9: 1)\right] 0.55$; $v_{\text {max }}$ (film, $\left.\mathrm{CDCl}_{3}\right) / \mathrm{cm}^{-1} 1550(\mathrm{SPh}) ; \delta_{\mathrm{H}}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) 7.53-7.26(5 \mathrm{H}$, $\mathrm{m}, \mathrm{SPh}), 4.00\left(1 \mathrm{H}, \mathrm{dt}, J 11.2\right.$ and $\left.1.9, \mathrm{CH}_{\mathrm{A}} \mathrm{H}_{\mathrm{B}} \mathrm{O}\right), 3.28(1 \mathrm{H}, \mathrm{td}$, $J 11.2$ and $\left.2.7, \mathrm{CH}_{\mathrm{A}} H_{\mathrm{B}} \mathrm{O}\right), 3.07(1 \mathrm{H}$, dd, $J 10.8$ and 1.6 , $\mathrm{C} H \mathrm{SPh})$ and $2.04-1.21\left(16 \mathrm{H}, \mathrm{m}, 8 \times \mathrm{CH}_{2}\right) ; \delta_{\mathrm{C}}(100 \mathrm{MHz}$, $\left.\mathrm{CDCl}_{3}\right) 137.6$ ($o-\mathrm{SPh}$), 131.9* $(i-\mathrm{SPh})$, 128.6 ($p-\mathrm{SPh}$), 128.4 (o-SPh), $82.0(\mathrm{CHOH}), 69.1^{*}\left(\mathrm{CH}_{2} \mathrm{O}\right), 57.2(\mathrm{CSPh}), 30.8^{*}$,
30.5*, 25.9*, 25.5*, 24.0*, 23.7*, 21.9* and 21.8* $\left(8 \times \mathrm{CH}_{2}\right)$ (Found $\mathrm{M}^{+}, 276.1560 . \mathrm{C}_{17} \mathrm{H}_{24} \mathrm{OS}$ requires M, 276.1548); m/z $276.1(30 \%, \mathrm{M})$, $191.1\left(70, \mathrm{C}_{6} \mathrm{H}_{10} \mathrm{SPh}\right)$, 167.1 (63 , M -SPh), $110.0(10, \mathrm{PhSH})$ and $83.9\left(100, \mathrm{M}-\mathrm{C}_{6} \mathrm{H}_{10} \mathrm{SPh}\right)$.

5-Cyclohexenyl-5-(phenylsulfanyl)pentan-1-ol 42

In the same way as THP 11, the tetrahydropyran $41(10 \mathrm{mg}$, $36.4 \mu \mathrm{~mol}$) toluene- p-sulfonic acid ($6.2 \mathrm{mg}, 36.4 \mu \mathrm{~mol}$) in toluene (1 ml) gave, after flash column chromatography on silica gel eluting with light petroleum $\left(40-60^{\circ} \mathrm{C}\right)$-ether $(9: 1)$, the allylic sulfide $42(9.2 \mathrm{mg}, 92 \%)$ as an oil; R_{f} [light petroleum ($40-$ $60{ }^{\circ} \mathrm{C}$)-ether ($1: 1$)] $0.4 ; v_{\text {max }}\left(\right.$ film, $\left.\mathrm{CDCl}_{3}\right) / \mathrm{cm}^{-1} 3300-3100(\mathrm{OH})$ and $1600(\mathrm{SPh}) ; \delta_{\mathrm{H}}\left(250 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) 7.37-7.20(5 \mathrm{H}, \mathrm{m}, \mathrm{SPh})$, $5.25(1 \mathrm{H}, \mathrm{br} \mathrm{s}, \mathrm{CH}=\mathrm{C}), 3.51(1 \mathrm{H}, \mathrm{t}, J 7.6, \mathrm{C} H \mathrm{SPh}), 3.51(2 \mathrm{H}$, $\left.\mathrm{t}, J 7.2, \mathrm{CH}_{2} \mathrm{O}\right), 2.50(1 \mathrm{H}, \mathrm{br} \mathrm{s}, \mathrm{OH})$ and $2.15-1.20(14 \mathrm{H}, \mathrm{m}$, $\left.7 \times \mathrm{CH}_{2}\right) ; \delta_{\mathrm{C}}\left(62.5 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) 135.6^{*}(i-\mathrm{SPh}), 133.2(\mathrm{~m}-\mathrm{SPh})$, 128.6 (o-SPh), 127.2 ($p-\mathrm{SPh}$), 125.4 ($\mathrm{CH}=\mathrm{C}$), 57.2 (CHSPh), 70.7* $\left(\mathrm{CH}_{2} \mathrm{O}\right), 31.9^{*}, 27.1^{*}, 25.1^{*}, 24.6^{*}, 23.9^{*}, 22.8^{*}$ and 22.2^{*} $\left(7 \times \mathrm{CH}_{2}\right) ; m / z 276.1(100 \%, \mathrm{M})$ and $81.1\left(30, \mathrm{C}_{6} \mathrm{H}_{9}\right)$.

Ethyl 3-trimethylsilyloxy-3-[1-(phenylsulfanyl)cyclohexyl]propanoate 43

$\mathrm{Me}_{3} \mathrm{SiCl}(0.21 \mathrm{ml}, 3.5 \mathrm{mmol})$ was added to a stirred solution of the ester 25, $\mathrm{Et}_{3} \mathrm{~N}(0.5 \mathrm{ml}, 3.5 \mathrm{mmol})$ in THF $(10 \mathrm{ml})$ at $0^{\circ} \mathrm{C}$. The solution was stirred for 2 days. Brine (saturated $\mathrm{NaCl}, 10$ $\mathrm{ml})$ was added and the solution was extracted with ether $(2 \times 10$ $\mathrm{ml})$. The combined organic layers were dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$ and evaporated under reduced pressure. The residue was purified by flash column chromatography on silica gel eluting with light petroleum $\left(40-60^{\circ} \mathrm{C}\right)$-ether $(9: 1)$ to give the protected ester 43 $(0.135 \mathrm{~g}, 72 \%)$ as an oil; R_{f} [light petroleum $\left(40-60^{\circ} \mathrm{C}\right)$-ether (9:1)] 0.42; $\delta_{\mathrm{H}}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right.$) $7.56-7.27$ ($\left.5 \mathrm{H}, \mathrm{m}, \mathrm{SPh}\right), 4.17$ $\left(2 \mathrm{H}, \mathrm{q}, J 7.1, \mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{O}\right), 4.10(1 \mathrm{H}, \mathrm{dd}, J 9.3$ and $1.6, \mathrm{CHOSi})$, $3.43\left(1 \mathrm{H}, \mathrm{dd}, J 15.7\right.$ and $\left.1.6, \mathrm{CH}_{\mathrm{A}} \mathrm{H}_{\mathrm{B}} \mathrm{CO}\right), 2.52(1 \mathrm{H}, \mathrm{dd}, J 15.7$ and $\left.9.3, \mathrm{CH}_{\mathrm{A}} H_{\mathrm{B}} \mathrm{CO}\right), 2.16-2.13\left(10 \mathrm{H}, \mathrm{m}, 5 \times \mathrm{CH}_{2}\right) ; \delta_{\mathrm{C}}(100$ $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right) 173.2(\mathrm{CO}), 137.5(o-\mathrm{SPh}), 131.2(i-\mathrm{SPh}), 128.7$ $(p-\mathrm{SPh}), 128.4(m-\mathrm{SPh}), 75.6(\mathrm{CHOH}), 60.4\left(\mathrm{CH}_{2} \mathrm{O}\right), 57.7$ (CSPh), 38.6, 31.2, 28.2, 25.9 and $21.8\left(5 \times \mathrm{CH}_{2}\right), 14.3\left(\mathrm{CH}_{3}\right)$ and 0.2 (TMS) (Found $\mathrm{M}^{+}, 380.1864 . \mathrm{C}_{20} \mathrm{H}_{32} \mathrm{O}_{2} \mathrm{SSi}$ requires M, 380.1841); $\mathrm{m} / \mathrm{z} 380.2$ ($24 \%, \mathrm{M}$), 291.1 (30 , M - TMSO) and 271.2 (76, M - SPh).

3-Trimethylsilyloxy-3-[1-(phenylsulfanyl)cyclohexyl]propanal 44

DIBAL-H was slowly added to a stirred solution of ester $\mathbf{4 3}$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ at $-78^{\circ} \mathrm{C}$. The solution was stirred for 30 min . Ether $(50 \mathrm{ml}), \mathrm{NaOH}(20 \mathrm{ml}, 10 \%)$ and $\mathrm{K}-\mathrm{Na}$ tartrate ($20 \mathrm{ml}, 15 \%$) was slowly added and the solution was allowed to stir for a further 30 min at room temperature. The solution was extracted with ether ($3 \times 30 \mathrm{ml}$) and the combined organic layers were dried $\left(\mathrm{MgSO}_{4}\right)$ and evaporated under reduced pressure. The residue was purified by flash column chromatography on silica gel eluting with light petroleum $\left(40-60^{\circ} \mathrm{C}\right)$-ether $(9: 1)$ to give the aldehyde $44(2.54 \mathrm{~g}, 83 \%)$ as an oil; R_{f} [light petroleum ($40-60^{\circ} \mathrm{C}$)-ether ($9: 1$)] $0.41 ; \delta_{\mathrm{H}}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) 9.91$ ($1 \mathrm{H}, \mathrm{dd}, J 2.5$ and $0.94, \mathrm{CHO}$), $7.52-7.26(5 \mathrm{H}, \mathrm{m}, \mathrm{SPh}), 4.13$ $(1 \mathrm{H}, \mathrm{dd}, J 7.8$ and $2.7, \mathrm{CHOH}), 3.34(1 \mathrm{H}$, ddd, $J 17.1,2.7$ and $\left.0.9, \mathrm{CH}_{\mathrm{A}} \mathrm{H}_{\mathrm{B}} \mathrm{CHO}\right), 2.88\left(1 \mathrm{H}\right.$, ddd, $J 17.1,7.8$ and $2.5, \mathrm{CH}_{\mathrm{A}^{-}}$ $\left.H_{\mathrm{B}} \mathrm{CHO}\right)$, 2.12-1.10 ($10 \mathrm{H}, \mathrm{m}, 5 \times \mathrm{CH}_{2}$) and $-0.05(9 \mathrm{H}, \mathrm{s}$, TMS); $\delta_{\mathrm{C}}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) 209.9$ (CHO), 137.2 ($\left.o-\mathrm{SPh}\right), 131.3$ (i-SPh), 128.7 ($p-\mathrm{SPh}$), 128.5 (m -SPh), 73.4 (CHOSi), 57.7 (CSPh), $47.8\left(\mathrm{CH}_{2} \mathrm{CHO}\right), 31.5,29.8,25.8,21.8$ and $21.7\left(5 \mathrm{CH}_{2}\right)$ and 0.3 (TMS) (Found M^{+}, 336.1578. $\mathrm{C}_{18} \mathrm{H}_{28} \mathrm{O}_{2} \mathrm{SSi}$ requires M, 336.1655); $\mathrm{m} / \mathrm{z} 336.2(9 \%, \mathrm{M}), 247.1$ (9 , M - TMSO) and 271.2 (25 , M - SPh).

(E)- and (Z)-1-[1-(Phenylsulfanyl)cyclohexyl]pent-3-ene-1,5-diol 48

n -BuLi ($0.18 \mathrm{ml}, 1.25 \mathrm{M}$ in hexanes, 1.01 mmol) was added
slowly to a stirred solution of 3-hydroxyethyl triphenylphosphonium bromide $45(0.18 \mathrm{~g}, 0.46 \mathrm{mmol})$ in THF (10 ml) at $0^{\circ} \mathrm{C}$. The dark red solution was stirred for 30 min . The solution was then cooled to $-30^{\circ} \mathrm{C}$ and $\mathrm{Me}_{3} \mathrm{SiCl}(63 \mu \mathrm{l}, 0.5 \mathrm{mmol})$ was added and this solution was stirred for 15 min . A solution of aldehyde $44(0.18 \mathrm{~g}, 0.46 \mathrm{mmol})$ in THF $(10 \mathrm{ml})$ was slowly added and allowed to warm to room temperature over 2 hours. TBAF ($0.54 \mathrm{ml}, 1 \mathrm{M}$ in THF, 0.54 mmol) was added and solution was stirred for a further 1 hour. Saturated $\mathrm{NH}_{4} \mathrm{Cl}$ was added and the solution was extracted with ether ($3 \times 25 \mathrm{ml}$). The combined organic layers were dried $\left(\mathrm{MgSO}_{4}\right)$ and evaporated under reduced pressure. The residue was purified by flash column chromatography on silica gel eluting with ether to give an separable stereoisomeric mixture of alkenes in a ratio of $1: 1$ of the $(Z)-48(11.9 \mathrm{mg}, 4.7 \%)$ as an oil; R_{f} [ether] 0.38 ; $\delta_{\mathrm{H}}\left(250 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) 7.51-7.25(5 \mathrm{H}, \mathrm{m}, \mathrm{SPh}), 5.88(1 \mathrm{H}, \mathrm{m}$, $\left.\mathrm{CH}_{\mathrm{A}}=\mathrm{CH}_{\mathrm{B}}\right), 5.63\left(1 \mathrm{H}, \mathrm{m}, \mathrm{CH}_{\mathrm{A}}=\mathrm{C} H_{\mathrm{B}}\right), 4.24(1 \mathrm{H}, \mathrm{dd}, J 12.0$ and 7.9, $\mathrm{CH}_{\mathrm{A}} \mathrm{H}_{\mathrm{B}} \mathrm{O}$), $3.97\left(1 \mathrm{H}, \mathrm{dd}, J 12.0\right.$ and 6.6, $\left.\mathrm{CH}_{\mathrm{A}} H_{\mathrm{B}} \mathrm{O}\right), 3.43$ (1 $\mathrm{H}, \mathrm{s}, \mathrm{OH}), 3.24(1 \mathrm{H}, \mathrm{dd}, J 10.2$ and 1.6, CHOH), $2.40(1 \mathrm{H}, \mathrm{dt}$, $J 13.4$ and $\left.10.2, \mathrm{C}_{\mathrm{A}} \mathrm{H}_{\mathrm{B}} \mathrm{CH}=\mathrm{CH}\right), 2.19(1 \mathrm{H}, \mathrm{dd}, J 13.4$ and 6.3 , $\left.\mathrm{CH}_{\mathrm{A}} \mathrm{H}_{\mathrm{B}} \mathrm{CH}=\mathrm{CH}\right)$ and $2.01-1.19\left(11 \mathrm{H}, \mathrm{m}, \mathrm{OH}\right.$ and $\left.5 \times \mathrm{CH}_{2}\right)$; $\delta_{\mathrm{C}}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) 137.2(\mathrm{~m}-\mathrm{SPh}), 131.1\left(\mathrm{CH}_{\mathrm{A}}=\mathrm{CH}_{\mathrm{B}}\right), 130.1$ $\left(\mathrm{CH}_{\mathrm{A}}=\mathrm{CH}_{\mathrm{B}}\right), 130.0(o-\mathrm{SPh}), 129.9(i-\mathrm{SPh}), 129.2(p-\mathrm{SPh}), 73.4$ $(\mathrm{CHOH}), 61.3(\mathrm{CSPh}), 30.4,29.5,28.6,26.3$ and 21.8 $\left(5 \times \mathrm{CH}_{2}\right)$; and the $(E)-48(12.4 \mathrm{mg}, 5.3 \%)$ as an oil; R_{f} [ether] $0.28 ; \delta_{\mathrm{H}}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) 7.52-7.28(5 \mathrm{H}, \mathrm{m}, \mathrm{SPh}), 5.79-5.66$ $\left(2 \mathrm{H}, \mathrm{m}, \mathrm{CH}_{\mathrm{A}}=\mathrm{CH}_{\mathrm{B}}\right), 4.09\left(2 \mathrm{H}, \mathrm{d}, J 4.9, \mathrm{CH}_{2} \mathrm{O}\right), 3.45(1 \mathrm{H}, \mathrm{dd}$, $J 10.2$ and $1.6, \mathrm{CHOH}), 3.10(1 \mathrm{H}, \mathrm{s}, \mathrm{OH}), 2.38(1 \mathrm{H}, \mathrm{dd}, J 5.1$ and $\left.4.9, \mathrm{CH}_{\mathrm{A}} \mathrm{H}_{\mathrm{B}} \mathrm{CH}=\mathrm{CH}\right), 2.19(1 \mathrm{H}$, dd, $J 10.3$ and 6.0 , $\mathrm{CH}_{\mathrm{A}} \mathrm{H}_{\mathrm{B}} \mathrm{CH}=\mathrm{CH}$) and 2.01-1.17 ($11 \mathrm{H}, \mathrm{m}, \mathrm{OH}$ and $5 \times \mathrm{CH}_{2}$); $\delta_{\mathrm{C}}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) 137.3(\mathrm{~m}-\mathrm{SPh}), 131.2\left(\mathrm{CH}_{\mathrm{A}}=\mathrm{CH}_{\mathrm{B}}\right), 130.5$ $\left(\mathrm{CH}_{\mathrm{A}}=\mathrm{CH}_{\mathrm{B}}\right), 130.1(i-\mathrm{SPh}), 129.1(o-\mathrm{SPh}), 128.9(p-\mathrm{SPh}), 74.5$ $(\mathrm{CHOH}), 63.6\left(\mathrm{CH}_{2} \mathrm{O}\right), 61.1(\mathrm{CSPh}), 33.8,30.6,29.8,26.2,21.9$ and $21.8\left(6 \times \mathrm{CH}_{2}\right)$.

2-[1'-(Phenylsulfanyl)cyclohexyl]-3,6-dihydro-2H-pyran 50

In the same way as THP 11, the (Z)-alkene $\mathbf{4 8}(11 \mathrm{mg}, 37 \mu \mathrm{~mol}$) and $\mathrm{TsOH}(1.4 \mathrm{mg}, 7.5 \mu \mathrm{~mol})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(5 \mathrm{ml})$ gave after flash column chromatography on silica gel, eluting with light petroleum ($40-60^{\circ} \mathrm{C}$)-ether ($9: 1$), the DHP $50\left(11 \mathrm{mg}, 99^{\circ} \%\right.$) as an oil; R_{f} [light petroleum ($40-60^{\circ} \mathrm{C}$)-ether (9:1)] 0.52; $\delta_{\mathrm{H}}(400 \mathrm{MHz}$, CDCl_{3}) $7.55-7.18(5 \mathrm{H}, \mathrm{m}, \mathrm{SPh}), 5.85(1 \mathrm{H}, \mathrm{dd}, J 10.1$ and 1.0 , $\left.\mathrm{CH}_{\mathrm{A}}=\mathrm{CH}_{\mathrm{B}}\right), 5.47\left(1 \mathrm{H}\right.$, br d, $\left.J 10.1, \mathrm{CH}_{\mathrm{A}}=\mathrm{C} H_{\mathrm{B}}\right), 4.22(1 \mathrm{H}, \mathrm{d}$, $\left.J 16.3, \mathrm{C}_{\mathrm{A}} \mathrm{H}_{\mathrm{B}} \mathrm{O}\right), 4.10\left(1 \mathrm{H}, \mathrm{d}, J 16.3, \mathrm{CH}_{\mathrm{A}} H_{\mathrm{B}} \mathrm{O}\right), 3.38(1 \mathrm{H}$, dd, $J 10.7$ and 3.1, CHSPh), $2.44\left(1 \mathrm{H}, \mathrm{m}, \mathrm{CH}_{\mathrm{A}} \mathrm{H}_{\mathrm{B}} \mathrm{CH}=\mathrm{CH}\right)$, $2.22\left(1 \mathrm{H}, \mathrm{br} \mathrm{d}, J 17.3, \mathrm{CH}_{\mathrm{A}} H_{\mathrm{B}} \mathrm{CH}=\mathrm{CH}\right)$ and 1.87-1.21 $(10 \mathrm{H}$, $\left.\mathrm{m}, 5 \times \mathrm{CH}_{2}\right) ; \delta_{\mathrm{c}}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) 135.5(\mathrm{~m}-\mathrm{SPh}), 131.9$ $(i-\mathrm{SPh}), 128.4(o-\mathrm{SPh}), 128.1(p-\mathrm{SPh}), 126.1\left(\mathrm{CH}_{\mathrm{A}}=\mathrm{CH}_{\mathrm{B}}\right), 124.8$ $\left(\mathrm{CH}_{\mathrm{A}}=\mathrm{CH}_{\mathrm{B}}\right)$, $77.9(\mathrm{CHO})$, $66.9\left(\mathrm{CH}_{2} \mathrm{OH}\right)$, $56.9(\mathrm{CSPh}), 31.1$, $30.8,25.9,25.4,21.9$ and $21.8\left(6 \times \mathrm{CH}_{2}\right)$.

($\boldsymbol{E}, \boldsymbol{E}$)-5-(Cyclohex-1-enyl)-5-phenylsulfanylpent-2-en-1-ol 51

In the same way as THP 11, the (E)-alkene $\mathbf{4 8}(12 \mathrm{mg}, 41 \mu \mathrm{~mol})$ and $\mathrm{TsOH}(1.5 \mathrm{mg}, 8.2 \mathrm{mmol})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(5 \mathrm{ml})$ gave after flash column chromatography eluting with ether, the allylic sulfide $(E, E)-51(12 \mathrm{mg}, 99 \%)$ as an oil; R_{f} [ether] $0.5 \delta_{\mathrm{H}}(400 \mathrm{MHz}$, $\left.\mathrm{CDCl}_{3}\right) 7.38-7.18(5 \mathrm{H}, \mathrm{m}, \mathrm{SPh}), 5.66(2 \mathrm{H}, \mathrm{m}, \mathrm{CH}=\mathrm{CH}), 5.27$ ($1 \mathrm{H}, \mathrm{s}, \mathrm{CH}=\mathrm{C}$), $4.08\left(2 \mathrm{H}, \mathrm{t}, J, 4.5, \mathrm{CH}_{2} \mathrm{OH}\right), 3.53(1 \mathrm{H}, \mathrm{t}, J 7.6$, CHSPh $), 2.40\left(2 \mathrm{H}, \mathrm{t}, J 5.8, \mathrm{CH}_{2} \mathrm{CH}=\mathrm{CH}\right), 21.6(1 \mathrm{H}, \mathrm{d}, J 16.4$, $\mathrm{CH}_{\mathrm{A}} \mathrm{H}_{\mathrm{B}} \mathrm{CH}=\mathrm{C}$) and 1.99-1.24 (8 H, m, $3 \times \mathrm{CH}_{2}, \mathrm{CH}_{\mathrm{A}} \mathrm{H}_{\mathrm{B}} \mathrm{CH}=\mathrm{C}$ and OH$) ; \delta_{\mathrm{C}}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) 135.3$ and $135.2(i-\mathrm{SPh}$ and $C=\mathrm{CH}), 133.3(\mathrm{~m}-\mathrm{SPh}), 131.0,129.9$ and $125.7(\mathrm{CH}=\mathrm{CH}$ and $C H=C), 128.5(o-S P h), 127.1(m-\mathrm{SPh}), 63.6\left(\mathrm{CH}_{2} \mathrm{OH}\right), 56.7$ (CHSPh), 35.6, 25.2, 24.3, 22.7 and $22.4\left(5 \times \mathrm{CH}_{2}\right)$.

6-Cyclohexenyl-6-(phenylsulfanyl)hexan-1-ol 53

In the same way as THP 11, the alcohol $\mathbf{8}, n=5(62 \mathrm{mg}, 0.2$ mmol) toluene- p-sulfonic acid ($10 \mathrm{mg}, 50 \mu \mathrm{~mol}$) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$
(1 ml) gave, after flash column chromatography on silica gel eluting with ether, the allylic sulfide 53 ($55 \mathrm{mg}, 95 \%$) as an oil; R_{f} [ether] 0.51; $\delta_{\mathrm{H}}\left(250 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) 7.35-7.17(5 \mathrm{H}, \mathrm{m}, \mathrm{SPh}), 5.25$ ($1 \mathrm{H}, \mathrm{br} \mathrm{s}, \mathrm{CH}=\mathrm{C}$), $3.62\left(2 \mathrm{H}, \mathrm{t}, J 6.6, \mathrm{CH}_{2} \mathrm{O}\right), 3.50(1 \mathrm{H}, \mathrm{t}, J 7.6$, $\mathrm{C} H \mathrm{SPh})$ and $2.17-1.33\left(17 \mathrm{H}, \mathrm{m}, 8 \times \mathrm{CH}_{2}\right.$ and OH$) ; \delta_{\mathrm{C}}(62.5$ $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right) 135.8$ and $135.6(i-\mathrm{SPh}$ and $\mathrm{CH}=C), 133.2$ $(o-S P h), 128.4(m-S P h), 126.9(p-S P h), 125.4(C H=C), 62.9$ $\left(\mathrm{CH}_{2} \mathrm{O}\right), 57.3(\mathrm{CHSPh}), 32.6,32.5,27.4,25.5,23.8,22.7$ and $22.5\left(8 \times \mathrm{CH}_{2}\right)$.

7-Cyclohexenyl-7-(phenylsulfanyl)heptan-1-ol 54

In the same way as THP 11, the alcohol $\mathbf{8}, n=6(65 \mathrm{mg}, 0.2$ $\mathrm{mmol})$ toluene- p-sulfonic acid $(10 \mathrm{mg}, 50 \mu \mathrm{~mol})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(1$ $\mathrm{ml})$ gave, after flash column chromatography on silica gel eluting with ether, the allylic sulfide $54(60 \mathrm{mg}, 99 \%)$ as an oil; R_{f} [ether] 0.50; $\delta_{\mathrm{H}}\left(250 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) 7.40-7.17(5 \mathrm{H}, \mathrm{m}, \mathrm{SPh}), 5.24$ ($1 \mathrm{H}, \mathrm{br} \mathrm{s}, \mathrm{CH}=\mathrm{C}), 3.61\left(2 \mathrm{H}, \mathrm{t}, J 6.6, \mathrm{CH}_{2} \mathrm{O}\right), 3.61(1 \mathrm{H}, \mathrm{t}$, $J 7.6, \mathrm{CHSPh})$ and $2.16-1.24\left(19 \mathrm{H}, \mathrm{m}, 9 \times \mathrm{CH}_{2}\right.$ and OH$)$; $\delta_{\mathrm{C}}\left(62.5 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) 135.7$ and $135.5(i-\mathrm{SPh}$ and $\mathrm{CH}=C), 133.1$ (m-SPh), 128.4 (o-SPh), $126.8(p-\mathrm{SPh}), 125.4(\mathrm{CH}=\mathrm{C}), 62.9$ $\left(\mathrm{CH}_{2} \mathrm{O}\right), 57.33$ (CHSPh), 32.7, 32.4, 29.1, 27.6, 25.6, 25.2, 23.7, 22.7 and $22.5\left(9 \times \mathrm{CH}_{2}\right)$ (Found M^{+}, 304.1860. $\mathrm{C}_{19} \mathrm{H}_{28} \mathrm{OS}$ requires M, 304.1816); $m / z 304.1$ (79%, M) and 195.1 (42, $\mathrm{M}-\mathrm{SPh})$.

9-Cyclohexenyl-9-(phenylsulfanyl)nonan-1-ol 55

In the same way as THP 11, the alcohol 8, $n=8(70 \mathrm{mg}$, 0.2 mmol) toluene- p-sulfonic acid ($10 \mathrm{mg}, 50 \mu \mathrm{~mol}$) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ $(1 \mathrm{ml})$ gave, after flash column chromatography on silica gel eluting with ether, the allylic sulfide $55(65 \mathrm{mg}, 95 \%)$ as an oil; R_{f} [ether] 0.56; $\delta_{\mathrm{H}}\left(250 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) 7.47-7.16(5 \mathrm{H}, \mathrm{m}, \mathrm{SPh})$, $5.24(1 \mathrm{H}, \mathrm{brs}, \mathrm{CH}=\mathrm{C}), 3.62\left(2 \mathrm{H}, \mathrm{t}, J 6.6, \mathrm{CH}_{2} \mathrm{O}\right), 3.49(1 \mathrm{H}, \mathrm{t}$, $J 7.6, \mathrm{C} H \mathrm{SPh})$ and $2.28-1.24\left(23 \mathrm{H}, \mathrm{m}, 11 \times \mathrm{CH}_{2}\right.$ and OH$)$; $\delta_{\mathrm{C}}\left(62.5 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) 135.8$ and 135.7 ($i-\mathrm{SPh}$ and $\mathrm{CH}=C$), 133.1 (m -SPh), 128.3 ($o-\mathrm{SPh}$), 126.7 (p -SPh), $125.4(\mathrm{CH}=\mathrm{C}$), $63.0\left(\mathrm{CH}_{2} \mathrm{O}\right), 57.4$ (CHSPh), 32.8, 32.5, 29.5, 29.4, 29.3, 27.6, 25.7, 25.2, 23.7, 22.7 and $22.5\left(11 \times \mathrm{CH}_{2}\right)$ (Found M^{+}, $322.2171 . \mathrm{C}_{21} \mathrm{H}_{32} \mathrm{OS}$ requires $\left.\mathrm{M}, 332.2174\right) ; m / z 332.2(40 \%, \mathrm{M})$ and 233.1 ($100, \mathrm{M}-\mathrm{SPh})$.

13-Cyclohexenyl-13-(phenylsulfanyl)tridecan-1-ol 56

In the same way as THP 11, the alcohol $\mathbf{8}, n=12(80 \mathrm{mg}, 0.2$ mmol) toluene- p-sulfonic acid ($10 \mathrm{mg}, 50 \mu \mathrm{~mol}$) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ $(1 \mathrm{ml})$ gave, after flash column chromatography on silica gel eluting with ether, the allylic sulfide $56(68 \mathrm{mg}, 95 \%)$ as an oil; R_{f} [ether] 0.56; $\delta_{\mathrm{H}}\left(250 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) 7.35-7.17(5 \mathrm{H}, \mathrm{m}, \mathrm{SPh})$, $5.24(1 \mathrm{H}, \mathrm{br} \mathrm{s}, \mathrm{CH}=\mathrm{C}), 3.62\left(2 \mathrm{H}, \mathrm{t}, J 4.2, \mathrm{CH}_{2} \mathrm{O}\right), 3.50(1 \mathrm{H}, \mathrm{t}$, $J 4.8, \mathrm{CHSPh})$ and $2.16-1.65\left(29 \mathrm{H}, \mathrm{m}, 14 \times \mathrm{CH}_{2}\right.$ and OH$)$; $\delta_{\mathrm{C}}\left(62.5 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) 136.0$ and $135.9(i-\mathrm{SPh}$ and $\mathrm{CH}=C), 133.2$ (o-SPh $), 128.5(o-\mathrm{SPh}), 126.9(p-\mathrm{SPh}), 125.4(\mathrm{CH}=\mathrm{C}), 63.2$ $\left(\mathrm{CH}_{2} \mathrm{O}\right), 57.5$ (CHSPh), 32.9, 32.6, 29.6, 29.6, 29.5, 29.4, 27.7,
26.3, 25.8, 23.9, 22.8 and $22.7\left(14 \times \mathrm{CH}_{2}\right)$ (Found M^{+}, 374.2632. $\mathrm{C}_{24} \mathrm{H}_{38} \mathrm{OS}$ requires $\mathrm{M}, 374.2643$); $m / z 374.2$ (24%, M) and 265.1 (100, M - SPh).

Acknowledgements

We thank the EPSRC for a grant (to J. E.), Ray V. H. Jones (Zeneca Process Technology Department, Grangemouth) for a CASE award (to J. E.) and Rhône-Poulenc Industrialisation (CRIT) Saint-Fons for a grant (to L. D.).

References

1 P. Brownbridge and S. Warren, J. Chem. Soc., Perkin Trans. 1, 1977, 2272.

2 V. K. Aggarwal and S. Warren, J. Chem. Soc., Perkin Trans. 1, 1987, 2579.

3 V. K. Aggarwal and S. Warren, Tetrahedron Lett. 1986, 27, 101.
4 V. K. Aggarwal, I. Coldham, S. McIntye and S. Warren, J. Chem. Soc., Perkin Trans. 1, 1991, 451.
5 I. Coldham and S. Warren, J. Chem. Soc., Perkin Trans. 1, 1993, 1637.

6 (a) J. Eames, R. V. H. Jones and S. Warren, Tetrahedron Lett., 1996, 37, 707; (b) J. Eames and S. Warren, J. Chem. Soc., Perkin Trans. 1, 1999, 2783.
7 J. E. Baldwin, J. Chem. Soc., Chem. Commun., 1976, 734.
8 (a) A. J. Kirby, Adv. Phys. Org. Chem., 1981, 17, 183; (b) L. Mandolini, Adv. Phys. Org. Chem., 1986, 22, 1.
9 (a) F. H. Sansbury and S. Warren, Tetrahedron Lett., 1991, 32, 3425; (b) S. McIntyre, F. H. Sansbury and S. Warren, Tetrahedron Lett., 1991, 32, 5409; (c) F. H. Sansbury and S. Warren, Tetrahedron Lett., 1992, 33, 539.
10 Inversion also occurs at the migratory origin, see V. K. Aggarwal, I. Coldham, S. McIntye, F. H. Sansbury, M.-J. Villa and S. Warren, Tetrahedron Lett., 1988, 29, 4885.
11 J. Eames and S. Warren, Tetrahedron Lett., 1996, 37, 3525.
12 Preliminary communication: L. Djakovitch, J. Eames, R. V. H. Jones, S. McIntyre and S. Warren, Tetrahedron Lett., 1995, 36, 1723.
13 J. Eames, H. J. Mitchell, A. Nelson, P. O'Brien, S. Warren and P. Wyatt, Tetrahedron Lett., 1995, 36, 1719.

14 J. Eames, H. J. Mitchell, A. Nelson, P. OBrien, S. Warren and P. Wyatt, J. Chem. Soc., Perkin. Trans. 1, 1999, 1095.

15 P. Brownbridge and S. Warren, J. Chem. Soc., Perkin Trans. 1, 1977, 1131.

16 J. Eames, Ph.D. Thesis, University of Cambridge, 1996.
17 E. J. Corey and M. J. Chaykovsky, J. Am. Chem. Soc., 1965, 87, 1353.

18 J. Eames, M. A. de las Heras, R. V. H. Jones and S. Warren, Tetrahedron Lett., 1996, 37, 1117.
19 E. L. Eliel, W. H. Pearson, L. M. Jewell, A. G. Abatjoglou and W. R. Kenan, Tetrahedron Lett., 1980, 21, 331.

20 P. C. Eaton, G. F. Cooper, R. C. Johnson and R. H. Muellur, J. Org. Chem., 1972, 37, 1947.
21 J. Eames, N. Kuhnert, F. H. Sansbury and S. Warren, Synlett, 1999, 1211.

